1**F0**8

Extended multiconfiguration theory applied to H₂⁺

•Erik Lötstedt, Tsuyoshi Kato, Kaoru Yamanouchi Department of Chemistry, School of Science, The University of Tokyo, Japan

[Abstract] The extended multiconfiguration time-dependent Hartree-Fock (Ex-MCTDHF) method is applied to the simulation of strong field-induced dissociation of a hydrogen molecular ion. In the Ex-MCTDHF method, the total electro-protonic wave function is written as a sum of products of electronic and protonic time-dependent wave functions. Differently from the commonly adopted Born-Oppenheimer (BO) approximation, the electronic wave functions have no parametric dependence on the internuclear distance. It is shown that the Ex-MCTDHF method is well suited to describe not only laser-induced ionization of H₂⁺ but also laser-induced dissociation of H₂⁺ into H + H⁺ fragments and vibrational excitations in bound H₂⁺. The results obtained by the Ex-MCTDHF method are compared with those obtained by solving the time-dependent Schrödinger equation directly on a three-dimensional grid and with those obtained with the BO approximation.

[Introduction] The standard theoretical method to simulate molecules exposed to an intense laser pulse is the Born-Oppenheimer (BO) approximation, in which the total time-dependent wave function Ψ is expanded as

$$\Psi(\boldsymbol{r},\boldsymbol{R},t) = \sum_{n=1}^{K} \chi_n(\boldsymbol{R},t)\phi_n(\boldsymbol{r};\boldsymbol{R}).$$
(1)

In Eq. (1), **R** denotes the collective coordinate of the nuclei in the molecule, **r** denotes the electronic coordinates, $\chi_n(\mathbf{R}, t)$ is the *n*-th time-dependent nuclear wave function (n = 1, 2, ..., K), and $\phi_n(\mathbf{r}; \mathbf{R})$ is the *n*-th electronic wave function that depends parametrically on **R**. However, for polyatomic molecules having many vibrational degrees of freedom, it would be a formidable task to compute the electronic states $\phi_n(\mathbf{r}; \mathbf{R})$ at each value of **R**. Furthermore, when we simulate an ionization process, we need to include continuum electronic functions $\phi_{\varepsilon}(\mathbf{r}; \mathbf{R})$ having an excess energy ε in the expansion in Eq. (1), which the BO approximation could not accommodate appropriately.

An alternative ansatz for the total time-dependent wave function is [1],

$$\Psi(\boldsymbol{r},\boldsymbol{R},t) = \sum_{n=1}^{K} \chi_n(\boldsymbol{R},t)\phi_n(\boldsymbol{r},t), \qquad (2)$$

where the electronic wave functions $\phi_n(\mathbf{r}, t)$ depend on time t, but do not depend on **R**. The time-dependence of $\phi_n(\mathbf{r}, t)$ means that the electronic wave functions can vary their amplitude in response to the laser pulse, which facilitates the simulation of ionization. In addition, it is unnecessary to prepare a set of electronic states at each value of **R**. The MCTDHF method based on the ansatz (2) is referred to as the Ex-MCTDHF method [1], because it is a variation of the original MCTDHF method [2,3] extended so that it can include nuclear motion.

[Methods] We apply the Ex-MCTDHF method to the simulation of H_2^+ exposed to an intense laser pulse. In the case of H_2^+ , we have $\mathbf{R} = R$ in Eq. (2), with R being the internuclear distance, and $\mathbf{r} = (\rho, z)$ is the cylindrical coordinates of the electron. Both the molecular axis

and the electric field vector of the laser pulse are assumed to be parallel to the *z*-axis. In the Ex-MCTDHF method, the equations of motion satisfied by $\chi_n(R,t)$ and $\phi_n(\rho,z,t)$ are derived from the time-dependent variational principle. Orthonormality $\langle \phi_n | \phi_m \rangle = \delta_{nm}$ of the electronic wave functions is added as a constraint.

For comparison, we also carried out simulations by the BO approximation [Eq. (1)] as well as by a 3D grid method, where the time-dependent Schrödinger equation is solved directly on a 3D grid. In the BO method, the ground $1s\sigma_g$ and the first excited $2p\sigma_u$ electronic states of H_2^+ were adopted in the expansion of the wave functions.

Fig. 1. Protonic density $D(R,t) = R^2 \int \rho d\rho z |\Psi(\rho, z, R, t)|^2$ for H_2^+ exposed to an intense laser pulse. Results obtained with the Ex-MCTDHF method with (a) K = 1 and (b) K = 10. (c) Results obtained within the BO approximation. (d) Results obtained with the direct grid method. The time variation of the laser field is indicated with a green line in (a).

[Results and Discussion] The result of a simulation of H_2^+ exposed to a laser pulse with the wavelength of 400 nm, the total pulse width of 13 fs and the peak intensity of 5×10^{14} W/cm² is shown in Fig. 1. We can see that the Ex-MCTDHF method with only one configuration (K = 1) does not reproduce the bifurcation of the vibrational wave packet into a dissociating component in which the average value $\langle R \rangle$ of the internuclear distance increases with increasing time and a component representing vibrational excitation for which $\langle R \rangle$ oscillates within the molecular domain. When K is increased to K = 10 a good agreement is reached between the results obtained by the Ex-MCTDHF method and those obtained by the 3D grid method, which is consistent with the earlier studies in which the motion of an electron was restricted to one dimension [4]. By comparing Fig. 1(c) and Fig. 1(d), we can see that the results obtained by the BO method with K = 2 and those obtained by the 3D grid method are in good agreement with each other.

In order to further assess the performance of the Ex-MCTDHF method, we also calculated the total ionization probability P_{ion} of H_2^+ for the same laser pulse as used in the simulation shown in Fig 1. We obtain $P_{ion}(\text{Ex-MCTDHF}) \approx 0.19$, which agrees well with $P_{ion}(3D \text{ grid}) \approx 0.17$ obtained by the 3D grid method. It should be noted that ionization cannot be described by the BO approximation, and consequently, P_{ion} cannot be calculated in the BO approximation.

In summary, we showed that the Ex-MCTDHF method can be used to simulate both dissociation and ionization of molecules induced by an intense laser pulse.

[References]

[1] T. Kato and K. Yamanouchi, J. Chem. Phys. 131, 164118 (2009).

[2] T. Kato and H. Kono, Chem. Phys. Lett. 392, 533 (2004).

[3] J. Zanghellini, M. Kitzler, C. Fabian, T. Brabec, and A. Scrinzi, Laser Phys. 13, 1064 (2003).

[4] C. Jhala and M. Lein, Phys. Rev. A 81, 063421 (2010).