3P108 Adsorption of CO₂ into a Soft Porous Coordination Polymer: A Hybrid SCS-MP2:PBE-D3 Study

(FIFC, Kyoto Univ.¹, WPI-iCeMS, Kyoto Univ.², Dept. Appl. Chem., Nagoya Univ.³) ^OJia-Jia Zheng¹, Shinpei Kusaka², Ryotaro Matsuda^{2,3}, Susumu Kitagawa², Shigeyoshi Sakaki¹

[Introduction] Soft porous coordination polymers (PCPs) have attracted continuous attention in recent years, because of their unique properties such as the gate-opening-type adsorption of gas species. However, little knowledge has been presented on the gate-opening mechanism.

Very recently, a soft iron(II)-based PCP, $[Fe(ppt)_2]$, (PCP-N) (Hppt = 3-(2-pyrazinyl)-5-(4-pyridyl)-1,2,4-triazole, Scheme 1), was synthesized and demonstrated to undergo gate-opening adsorption of N₂, C₂H₂ and CO₂, whereas its isostructural framework $[Fe(dpt)_2]$, (PCP-C) (Hdpt = 3-(2-pyridyl)-5-(4-pyridyl)-1,2,4-triazole, Scheme 1) was found to undergo gas-adsorption without gate-opening.^[1] Theoretical studies on gas adsorption into these

Scheme 1. Structures of Hppt and Hdpt

PCPs are of great importance to understand their different adsorption behaviour. However, it is challenging to estimate accurately the interaction energy between gas molecule and PCPs, because the post-HF calculation

must be employed to incorporate dispersion interaction.

In this work, we theoretically investigated CO₂ adsorption into these two isostructural PCPs using a hybrid method combining DFT (PBE-D3) for periodic structure and SCS-MP2 for finite cluster model, to disclose the gate-opening mechanism and reasons for the difference in gate-opening behavior.

[Computational Methods] Geometrical optimization was carried out using PBE+D3 functional with periodic boundary condition as implemented in the VASP program. CO_2 binding energy was calculated with Eq (1).

$$BE^{SCS-MP2:PBE-D3} = BE^{PBE-D3} + INT^{SCS-MP2}(H-G) - INT^{PBE-D3}(H-G) + INT^{SCS-MP2}(G-G) - INT^{PBE-D3}(G-G)$$
(1)

where BE^{PBE-D3} is the binding energy calculated with the crystal structure, INT^{SCS-MP2}(H-G) and INT^{PBE-D3}(H-G) are interaction energies between CO₂ and cluster models (Scheme 2) calculated by SCS-MP2 and PBE-D3 methods, respectively, and INT^{SCS-MP2}(G-G) and INT^{PBE-D3}(G-G) are CO₂-CO₂ interaction energies in CO₂ clusters.

[Results and Discussion] The calculated CO₂ binding energies for sites I, II, and III (Scheme 2) in PCP-N and PCP-C both decrease in the order I > III > II. These results indicate that CO_2 adsorption into PCP-N and PCP-C occurs first at the site I. The favorable adsorption at the site I arises from the smaller crystal

deformation energy (ΔE_{def}) than those m for adsorption at the sites II and III (Table 1). PBE-D3 overestimates the CO_2 binding energy for the site I in PCP-N but the SCS-MP2:PBE-D3calculated value agrees well with the experimental result $(-5.71 \text{ kcal mol}^{-1})$ at the initial adsorption stage. These $a \overline{CO_2}$ adsorption energy at the initial stage.

Fable	1.	Binding	energies	(in	kcal	mol^{-1})	of	one	$\rm CO_2$
nolec	ule	with PCF	-N at thre	e si	tes.				

PCP-N	Ι	II	III
BE ^{PBE-D3}	-7.37	-2.94	-4.03
INT ^{PBE-D3}	-7.72	-7.77	-8.58
$\Delta E_{ m def}$	0.35	4.82	4.55
$INT^{PBE-D3}(H-G)$	-7.34	-6.80	-6.95
INT ^{SCS-MP2} (H-G)	-5.37	-5.07	-6.08
BE ^{SCS-MP2:PBE-D3}	-5.41	-1.21	-3.16
Exp.		-5.71^{a}	
PCP-C(BE ^{SCS-MP2:PBE-D3})	-4.55	-2.00	-2.11

results suggest that SCS-MP2 correction is of considerable importance to investigate correctly the adsorption behaviour of these PCPs. When the site I is fully occupied, subsequent CO₂ adsorption occurs at the sites II and III in different manner between PCP-N and PCP-C. The calculated binding energies (Table 2) indicate that CO₂ adsorption occurs at the sites II and III in PCP-N but does not in PCP-C after the full occupation of the site I. This difference arises from the smaller deformation energy of PCP-N than that of PCP-C. The binding energy for

the site III in PCP-N increases with CO₂ loading, which corresponds to the gateopening process. Details of the gate-opening mechanism will be discussed in the presentation.

Table 2. CO₂ binding energies with PCP-N and PCP-C at the sites II and III after the site I is fully occupied.

	PCP-N		PC	CP-C
	II	III	II	III
BE ^{PBE-D3}	-6.90	-6.29	-2.55	-1.42
$\Delta E_{ m def}$	2.11	2.95	6.23	7.84
BE ^{SCS-MP2:PBE-D3}	-4.77	-5.25	-0.27	-0.15

[1] Y. Ma, R. Matsuda, H. Sato, Y. Hijikata, L. Li, S. Kusaka, M. Foo, F. Xue, G. Akiyama, R. Yuan, S. Kitagawa, J. Am. Chem. Soc. 2015, 137, 15825-15832.