3P064

Si(110)-16×2 シングルドメイン清浄表面上に作製した SiO2 超薄膜の 表面界面組成と表面局所価電子状態

¹愛媛大学理学部化学科、²高工研物構研、³総研大 o垣内拓大¹、池田恭平¹、長岡伸一¹、間瀬一彦^{2,3}

Surface and Interface Chemical-States and Local Valence Electronic Structures of Ultrathin SiO₂ Films Fabricated on Clean Si(110)-16×2 Single Domain Surface

¹Department of Chemistry, Faculty of Science, Ehime University, ²Institute of Materials Structure Science, KEK, ³SOKENDAI (The Graduate University for Advanced Studies)

oTakuhiro Kakiuchi¹, Kyohei Ikeda¹, Shin-ichi Nagaoka¹, and Kazuhiko Mase^{2, 3}

1. 序

Si(110) 清浄表面は、16×2 表面超構造を示すシングルドメイン (SD) 構造を形成し、表面のホール移動度が Si(100) 面と比較して約2 倍高いことから、次世代 MOS-FET (金属酸化物半導体電界効果トランジスター)の基板材料として注目を集めている [1]。近年、Si(110)-16×2 SD 清浄表面 に対して 5 つの化学的環境の異なる表面サイト (SC1–SC5) および4 つの表面準位 (S_1 – S_4)が存 在することが明らかにされ、Adatom-Buckling (AB) モデルが提唱された [2]。一方で、その上に 作製した SiO₂超薄膜 (SiO₂/Si(110)) の表面界面の化学組成を明らかにした例は少なく、さらにそ の表面局所価電子状態を明らかにした研究はない。そこで本研究では、X 線光電子分光法および Si- $L_{23}VV$ オージェ電子-Si-2p 光電子コインシデンス分光法を用いて、SiO₂/Si(110)の表面界面化学 組成および表面局所価電子状態の膜厚依存性の解明に取り組んだ。

2. 実験

すべての測定は、放射光施設 Photon Factory の BL-11D に設置した電子-電子-コインシデンス (EEICO) 分光装置[3]を用いて行った。Si(110)-16×2 SD 清浄表面は、到達圧力 3.0×10⁻⁸ Pa の超高 真空槽内で[1ī2] 方向に通電し、1250°Cでフラッシング、930°Cで3 秒間のアニール、60 秒かけて 660°Cまで下げたのち 30 秒間のアニール、650°Cまで下げて 10 分間のアニールを行うことにより 作製した [1,2]。Si(110)-16×2 SD 清浄表面を 650°Cに通電加熱しながら、O₂(純度: 99.5%) を 0.3 kLangmuir (L, 1 L = 1.33×10^4 Pa · sec)、1 kL、6 kL、36 kL 導入して SiO₂超薄膜 (SiO₂/Si(110)) を 作製した。0.3 kL、1 kL、6 kL、および 36 kL の O₂を曝露で作製した SiO₂の膜厚は、Si 2*p* 光電子 スペクトル (PES) における Si⁰ 2*p*、Si⁴⁺ 2*p* ピーク強度から[4]、それぞれ 1.2 Å、1.7 Å、2.4 Å、お よび 5.3 Å と見積もった。SiO₂の 1 層の膜厚はおおよそ 1.5 Å であるため[5, 6]、これらの膜厚は それぞれ SiO₂ 0.8、1.1、1.6、および 3.5 層に対応する。

3. 結果と考察

Si(110)-16×2 清浄表面、膜厚 1.2 Å および 膜厚 5.3 Å の SiO₂/Si(110)超薄膜の Si 2p 光電子スペク トル (PES) を図 1 に示す。Si 2p ピークを Voigt 関数によってフィットした結果、SiO₂/Si(110)超 薄膜では Si(110)-16×2 の清浄表面の表面サイトは消失し、SiO₂の Si⁴⁺、SiO₂/Si 界面の Si¹⁺、Si²⁺、 Si³⁺、 Si 面の Si⁰成分が現れた。ここで Si の価数は、Si に結合した酸素の数を示す。図 1 中に示

図1. (a) Si(110)-16×2 清浄表面、(b) 膜厚 1.2 Å、(c) 膜厚 5.3 Å の SiO₂/Si(110)超薄膜試 料の Si 2p 光電子スペクトル。

図2. 膜厚 1.2、1.7、2.4 、5.3 Å の SiO₂/Si(110) 超薄膜試料の Si-*L*₂₃*VV*オージェ電子-Si⁴⁺-2*p* 光 電子コインシデンススペクトル。

した破線(Relative Binding Energy (*ReBE*) = +4.23 eV)は、Si-*L*₂₃*VV*オージェ電子-Si⁴⁺-2p光電子コ インシデンススペクトル(Si-*L*₂₃*VV*-Si⁴⁺-2p APECS)測定のトリガーシグナルに用いた光電子成分 の位置を示す。膜厚 1.2、1.7、2.4、5.3 Åの SiO₂/Si(110)超薄膜において、トリガーに用いた Si⁴⁺由 来の光電子成分はいずれも 97%以上であった。

膜厚 5.3 Åの SiO₂/Si(110)超薄膜から得られた Si-L₂₃VV-Si⁴⁺-2p APECS(•と実線)と通常のオージェ電子分光法で得られた Si L₂₃VV オージェ電子スペクトル(実線、singles Si L₂₃VV AES)を図 2 (a)に示す。Singles Si L₂₃VV AES が Si⁰、Si¹⁺、Si²⁺、Si³⁺、Si⁴⁺サイトから放出された Si⁰、Si¹⁺、Si²⁺、Si³⁺、Si⁴⁺サイトから放出された Si⁰、Si¹⁺、Si²⁺、Si³⁺、Si⁴⁺ L₂₃VV AES の和であるのに対し、Si-L₂₃VV-Si⁴⁺-2p APECS は表面 Si⁴⁺成分のみを選 別した表面最上の SiO₂層の Si⁴⁺ L₂₃VV AES に対応する[7,8]。膜厚 1.2、1.7、2.4、5.3 Å の SiO₂/Si(110) 超薄膜の Si-L₂₃VV-Si⁴⁺-2p APECS を図 2 (b)示す。SiO₂の膜厚が 5.3 Å よりも薄くなると、Si-L₂₃VV-Si⁴⁺-2p APECS の高運動エネルギー側のカットオフ (*AeKE*_{cutoff}) が+2.3±0.6 eV 程度高運動エネル ギー側にシフトした。*AeKE*_{cutoff}の高運動エネルギー側へのシフトは、価電子帯上端(VBM)のフ ェルミ準位側へのシフトを反映しており[7,8]、本測定結果は SiO₂ 超薄膜の膜厚が 2 層以下にな ると VBM が最大 1.4±0.3 eV 程度高フェルミ準位側にシフトしていることを示す。これは、SiO₂ に隣接する Si¹⁺、Si²⁺、Si³⁺サイトが増えるためと考えられる[7,8]。

References

[1] Y. Yamada et al., Phys. Rev. B 76, 153309 (2007). [2] K. Sakamoto et al., Phys. Rev. B 79, 245304 (2009).

- [3] T. Kakiuchi et al., J. Vac. Soc. Jpn. 51, 749 (2008). [4] F. J. Himpsel et al., Phys. Rev. B 38, 6084 (1988).
- [5] D.-A. Luh et al., Phys. Rev. Lett. 79 (1997) 3014. [6] J. H. Oh et al., Phys. Rev. B 63 (2001) 2053100. [7] T.
- Kakiuchi et al., J. Phy. Soc. Jpn. 80, 084703 (2011). [8] T. Kakiuchi et al., J. Phy. Soc. Jpn. 81, 074706 (2012).