3A03 NO₃ ラジカル v₃=1,v₄=2 状態(1927 cm⁻¹)の摂動解析

(岡山大院¹, 名古屋大², 広島市大³) <u>川口 建太郎</u>¹, 楢原 達朗¹, 藤森 隆彰², 唐 健¹, 石渡 孝³

Perturbation analysis of the NO₃ v₃=1,v₄=2 state (1927 cm⁻¹) (Okayama Univ.¹ Nagoya Univ.², Hiroshima City Univ.³) Kentarou Kawaguchi¹, Narahara Tatsuo¹, Ryuji Fujimori², Jian Tang¹, Takashi Ishiwata³

【序】NO₃ラジカルの1927 cm⁻¹バンドは赤外スペクトルの中で2番目に強い強度を持ち、1998 年、個々の *K*-サブバンドについての解析が報告された。¹⁾ 2014 年、そのバンドをv₃+2v₄ に帰属し、振動の非調和項(3次と4次)を含む振動エネルギー行列を対角化して固有ベ クトルを導き、それを用いてコリオリ相互作用を含んだ解析を行った。²⁾ その摂動解析は 1927 バンドの Δ K=1 について報告したが、 Δ K=-1 遷移と v₄=1 から v₃=1, v₄=2 の A 状態への遷 移(ホッとバンド)を含む同時解析はなされなかった。本研究では、それらの遷移を含む 摂動解析を¹⁵NO₃, ¹⁵NO₃に行ったのでその結果について報告する。

【振電相互作用を考慮した振動準位の帰属】実験については以前報告しているので省略する。 ²⁾ (1) NO₃でv₃=1,v₄=2への遷移が強く見え、同じD_{3h}対称のBF₃, SO₃ではそのバンドが報告 されていないのは注目すべきである。(2) v₃=1,v₄=2では2つのE'状態 l_3 =±1, l_4 =0, および l_3 =±1, l_4 =∓2が存在する。しかし、実際の1927 cm⁻¹バンドで観測された強いスペクトル線は大部分ひ とつのE'-A'バンドで説明できた。これらは、遷移が振電相互作用によるintensity borrowing機 構で見えていることを示唆する。そこで励起電子状態(E') からの振電相互作用による波動 関数の混合を考慮して強度を見積もった。その結果、基底状態から l_3 =±1, l_4 =0への遷移の方が l_3 =±1, l_4 =∓2に比べて5-8倍ほど強くなることが予想された。また1550 cm⁻¹付近で観測されたス ペクトル線の中にE'-E'とA'-E'の2つのバンドが帰属された。振電相互作用の考察によりE'-E' のホッとバンドでは l_3 =±1, l_4 =∓2への遷移は強度を持たないことが予想されたので、観測され たE'状態を l_3 =±1, l_4 =∓2への遷移は強度を持たないことが予想されたので、観測され たE'状態を l_3 =±1, l_4 =∓2への遷移は強度を持たないことが予想されたので、観測され

intensity borrowingで $v_3=1, v_4=2$ から生じる A_2 '振電 準位への遷移に帰属した。これは $v_3=1, v_4=1$ でも一 つのA'状態しか観測されていないことと同じであ る。³⁾

【コリオリ相互作用の解析】図1に $v_3=1,v_4=2$ の各 K状態の有効バンドオリジン値と回転定数¹⁾を示 す。摂動がなければ、各Kの回転定数は一致する はずである。Kl>0の場合は比較的滑らかな変化を 示している。相互作用の相手として、 $v_2=1,v_4=3$ を 考慮した。理由はそのエネルギーが762+1173=1935

図 1. 観測から得られた有効バンドオリ ジン波数と回転定数

 cm^{-1} で1927 cm^{-1} と近いからである。ところが $v_3=1, v_4=2$ との間に直接的なコリオリ項は存在しない。そこで、振動の非調和項による混合を考慮した。これは $v_3=1, v_4=1$ 状態で行った方法と同様で³⁾、 v_4 の量子数をひとつ増やすだけで見積もることができる。最初は非調和定数 Φ_{444} の効果で v_4 の異なる準位間の混合が大きくなり、摂動計算の妥当性が気がかりであったが、最近の $2v_4$ 状態の解析により、 Φ_{444} の値は以前ほど³⁾大きくないことがわかった。 Φ_{344} , Φ_{334} , Φ_{444} を含む非調和項による相互作用する準位で比較的近い (500 cm⁻¹より小さなエネルギー差を与える)準位として ($v_1v_2v_3v_4$)=(0004), (0013), (0111), (0102)を考慮した。エネルギー差 Δ E_nは Δ E₁ = E((0012)-E(0004)= 315 cm⁻¹, Δ E₂ = E((0013)-E(0012)= 462 cm⁻¹, Δ E₃ = E((0103)-E(0102) = 402 cm⁻¹, Δ E₄ = E((0111)-E(0103)=319 cm⁻¹である(¹⁴NO₃)。(0201)[約1885 cm⁻¹]が(0103)に近いので、非調和項による混合を考えると、その間にコリオリ相互作用が存在するが、とり扱っている(0012)への効果は間接的であるので考慮しなかった。それゆえ解析結果の(0103)状態の分子定数は '有効な'値とみなされる。またその準位(0201)は(0012)と非調和項 Φ_{2234} 項によって相互作用するが、Stantonによる見積もり $\Phi_{2234}=31$ cm⁻¹を用いると⁴、行列要素は $\Phi_{2234}/48/(2)^{1/2}<1$ cm⁻¹ となり、エネルギー差47 cm⁻¹に比べて小さいので無視した。

(0012)と(0103)間は近いのでこれらを含むエネルギー行列の対角化で固有値を求めた。様々な*l* 値の組み合わせにより14種の非対角要素が存在する。その中で最も大きいのは(001¹2⁰)状態と(010⁰3⁻¹)状態間の行列要素で主に以下のように表される。(E-E型相互作用)

$$-\frac{B\zeta_{24}\Phi_{344}}{2}\left(\frac{1}{\Delta E_{1}}-\frac{1}{3\Delta E_{4}}\right)$$

この相互作用により図1のkD0の準位はほぼ説明できた。ところが、kl<0の準位では大きな偏差が認められた。EA相互作用が効いてくるのが理由で、解析にEEとは異なる相互作用定数を導入する必要があった。それにより1927バンドと1550バンドのスペクトル線622本がフィットでき標準偏差が0.0053 cm⁻¹と得られた。その値は測定精度0.002 cm⁻¹より大きかったので、AE相互作用にも異なる相互作用定数を導入し、0.0038 cm⁻¹の標準偏差を得た。相互作用定数 により Φ_{344} =-468 cm⁻¹と得られ v_3 + v_4 バンドから得られた値-444 cm⁻¹と一致した。波動関数の混合による(0103^{±1})E"への遷移もいくつか帰属できた。

【結果と考察】解析により以下の振動準位のエネルギーを決定した。

	$(001^{\pm 1}2^0)$ E'	$(001^{\pm 1}2^{\pm 2})A_2$	$(0103^{\pm 1})$ E"	$(001^{\pm 1}2^{\mp 2})E'$	(0103 ^{±3})A'	,
¹⁴ NO ₃	1926.148(1)	1919.332(7)	1930.058(9)	[1949]	[1970] [1908	3]
¹⁵ NO ₃	1897.935(1)	1894.551(8)	1895.622(9)	[1921]	[1936] [1898	8]
ここで[]内の数字は実際には観測されていない準位を示す。なお(001 ^{±1} 2 ^{±2})A ₁ 'も解析から						
¹⁴ N, ¹⁵ N種に対してそれぞれ1915, 1890 cm ⁻¹ と得られたがその状態への遷移は上記理由により						
強度は弱い	いと予想され、 検	き出されていない。	。振動数の同位の	本シフトは(0	$01^{\pm 1}2^{0})$ E', (0	0103 ^{±1})E"
でそれぞれ	$128.2, 34.4 \text{ cm}^{-1}$	と得られた。計算	値はそれぞれ27	.3, 35.5 cm ⁻¹ &	近く振動の	帰属をサ
ポートする	5° (001 ^{±1} 2 ^{±2})E'∽	への遷移は(001 ^{±1} 2	⁰)E'への遷移の約	約20 cm ⁻¹ 高波	数側に期待る	され、実
際、かなり)のスペクトル約	泉が帰属されずに	残っている。そ	の帰属は今後	後の課題であ	る。

【文献】1) Kawaguchi et al. Chem. Phys. 231, 193 (1998). 2) 川口、楢原、藤森、唐、石渡、2014 分子科学会。3) Kawaguchi et al. J. Phys. Chem. A 117, 13732 (2013).

4) Stanton, Mol. Phys. 107, 1059 (2009).