2P054

(1-naphtylamminium⁺)(dibenzo[18]crown-6)

超分子カチオンの結晶内分子運動による構造相転移

(北大電子研¹・北大院環境科学²・東北大多元研³) 〇久保和也^{1,2}・厳寅男^{1,2}・ 野呂真一郎^{1,2}・芥川智行³・中村貴義^{1,2}

Structural phase transition through molecular motion of (1-naphtylamminium⁺)(dibenzo[18]crown-6) supramolecular cation in the solid state (Research Institute for Electronic Science, Hokkaido University¹; Graduate School of Environmental Science, Hokkaido University²; Institute of Multidisciplinary Research for Advanced Materials, Tohoku University³) KUBO, Kazuya^{1,2}; Yan, Yin-Nan¹; NORO, Shin-ichiro^{1,2}; AKUTAGAWA, Tomoyuki³; NAKAMURA, Takayoshi^{1,2}

【背景】有機アンモニウムカチオンとクラウンエーテル誘導体 は、水素結合を介した超分子カチオンを形成し、結晶内で回転や 振り子運動など、様々な分子運動を実現することができる。この ような分子運動として、我々は、(*m*-FAni⁺)(DB[18]crown-6) (*m*-FAni⁺=*m*-fluoroanilinium, DB[18]crown-6 = dibenzo[18]crown-6) 超 分子ローター構造の結晶内における flip-flop 運動による、秩序-無秩序型の分子性強誘電体の開発に成功している[1]。しかしな がら、結晶内における分子回転運動は、回転分子周りの立体障害 に大きく影響されるため、実際に結晶内での分子回転を実現す るには困難を伴う。一方、結晶内での振り子運動は、分子回転運

動に比べ立体障害の影響を受けにくく、実現はより容易である[2]。本研究では、1-naphtylamminium⁺(1-NA⁺)とDB[18]crown-6からなる超分子カチオンとNi(dmit)2(dmit²⁻ = 2-thioxo-1,3-dithiole-4,5-dithiolate)からなる結晶 (1-NA⁺)(DB[18]crown-6)[Ni(dmit)2] (1)を合成し、単結晶 X 線構造解析と誘電率測定の結果を基に、結晶内振り子運動の詳細について検討したので報告する。

【合成】(1-NA⁺)(BF4)と DB[18]crown-6 を H 型セルの片側に、もう一方に (Bu4N)[Ni(dmit)2]を加えてアセトニトリルに溶解させ、1 週間、室温で静置することに より黒色針状の結晶 1 を得た。結晶 1 の組成は、単結晶 X 線構造解析と元素分析によ り決定した。

【結果】図1に300Kにおける a 軸方向から見た結晶1の構造を示す。ac 面に平行な 方向に、1-NA⁺と DB[18]crown-6 からなるカチオン層と[Ni(dmit)2]からなるアニオン 層が形成され、カチオン層とアニオン層が b 軸方向に交互に積層した構造を構築して いた。カチオン層内では、1-NA⁺のアミノ基と DB[18]crown-6 の酸素原子間の水素結 合を介し、超分子カチオン(1-NA⁺)(DB[18]crown-6)が形成されていた。この超分子カチ

オンが、a 軸方向に一次元的なカラ ム構造を形成していた。[Ni(dmit)2]⁻ アニオン分子は、1-NA+分子を分子面 の両側から挟み込むように配列して いた。結晶1の300Kにおける晶系 と空間群はそれぞれ、monoclinic、 *P2*₁/m であった(表 1)。結晶 1 の単 結晶 X 線構造解析を 100 K で行った ところ、空間群が P21 となり対称性 の低下が見られた。超分子カチオン 部位の構造を検討したところ、300K では 1-NA⁺分子の分子面内に鏡映面 が存在する。しかし、100Kでは、1-NA⁺とDB[18]crown-6に傾きが生じる ことにより鏡映面が消失することが 分かった(図2)。超分子カチオン部位 における温度因子の大きさと向きも 考慮すると、この結晶内では、1-NA+ 分子の分子面外方向に対する振り子 運動が示唆された。単結晶 X 線構造 解析を300Kから100Kまで20Kお きに行ったところ、この構造は180K から220Kにかけて徐々に変化し、二 次相転移であることが示唆された。

結晶 1 の誘電率を、各軸方向に 300 K から 20 K の範囲において、交流電場 の周波数を 1, 10, 100, 1000 kHz で測定 したところ、各軸方向の誘電率の実部 と虚部において、1-NA⁺分子の面外振 り子運動に起因すると考えられる周波 数に依存する誘電応答がみられた。磁 化率の温度変化測定では、[Ni(dmit)2]⁻ の S = 1/2 スピンに起因するキュリー ワイス的な挙動が見られた。

【参考文献】[1] T. Akutagawa *et al.*, *Nat. Mater.* **2009**, *8*, 342. [2] T. Akutagawa *et al.*, *Chem. Asian J.* **2010**, *5*, 520.

図1 a 軸方向から見た結晶1の構造。

図 2 (a) 300 K および(b) 100 K における結晶 1 超分子カチオン構造。

衣I 応用Iの悟迫ハノノー	表 1	1 結晶 1	の構造パラ	メー
---------------	-----	--------	-------	----

Chemical formula	$C_{36}H_{34}NNiO_6S_{10}$		
Formula weight	955.95		
Temperature / K	300	100	
Crystal system	monoclinic		
Space group	$P2_1/m$	$P2_{1}$	
<i>a</i> / Å	8.8274(11)	8.7352(10)	
<i>b</i> / Å	19.7846(19)	19.5930(17)	
<i>c</i> / Å	12.0539(11)	11.8860(11)	
β/°	101.854(2)	101.338(4)	
$V/\text{\AA}^3$	2060.3(4)	1994.6(3)	
Ζ	2	2	
$R (I > 2\sigma(I))$	0.0492	0.0448	
wR (all data)	0.1551	0.1122	
GOF	1.081	1.017	
Flack		0.476(7)	