1P108

H₂/HD@C₆₀フラーレンにおける NMR 核磁気遮蔽定数の

計算

(分子研¹,横浜市大・生命ナノ²)○河津 励¹.2,立川 仁典²

A computational study for the NMR magnetic shielding

constant of $H_2/HD@C_{60}$ fullerene

(IMS¹, Yokohama City Univ.²) OTsutomu Kawatsu^{1,2}, Masanori Tachikawa²

【序】

フラーレン内部は限られた体積を持つ疎水空間 であり、そこに内包された中性分子は、ほぼフラー レンのみと相互作用すると考えられる。村田らによ って合成された水素分子内包フラーレン (H2@C60)[1]では、水素のNMR化学シフトやその同 位体効果が報告されており、それを利用した実験か ら、フラーレン外部との相互作用が小さいことが報 告されている[2]。本研究では、核の量子効果を含み、 同位体効果についても導出可能である第一原理経 路積分分子動力学法[3]を用いて、真空、フラーレン 様レナード-ジョーンズ力場ケージ内、フラーレン

図 1 経路積分法に伴う H₂@C₆₀のビーズ展開描像。

内という三つのモデルに関して核磁気遮蔽定数の計算を行った。経路積分分子動力学 法は、量子系のビーズ展開により生成した古典粒子系の分布関数と、本来の量子系の 分布関数が等価になることを利用しており、量子系の物理量を従来の古典核近似を用 いた手法とほぼ同様の手順により計算する手法である。ビーズ展開した H2@C60 のス ナップショットを図1に示す。

【計算】

個々の H2@C60 の経路積分分子動力学計算では、293 K の温度に対応する初期速度 をランダムに与えたうえで、時間間隔 0.1 fs/step で 1 ps の平衡化シミュレーションを 行ったのち、3 ps の構造サンプリングを行った。このとき温度制御に能勢フーバー鎖 を用いることで、293K のカノニカルアンサンブルを生成している。その他の二つの モデルについても、同様の平衡化ののち、各 9 ps のサンプリングを行った。また、三 つのモデル全てについて、同様の手順で通常の分子動力学シミュレーションを行い、 それぞれ、16 ps、72 ps、72 ps のサンプリングを行った。経路積分分子動力学法、お よび通常の分子動力学法の計算にはこれまでも我々の研究室で使われてきたハウス コードを用いている[4]。シミュレーションで用いる原子間ポテンシャルの計算には Gaussian09を用いており、計算レベルはB97D/3-21G(,p)である。経路積分分子動力学 法によるビーズ展開数は32個とした。核磁気遮蔽定数はwB97/6-311G(,2pd)(水素), 6-31G(炭素)で、1 fs ごとの構造を用いて計算した。

【結果と考察】

それぞれのモデルを用いて計算した核磁気遮蔽定数を表1に示した。計算された核 磁気遮蔽定数は、それぞれのモデルに対して異なった値を示している。今回の計算で は電子と原子核の間にボルン=オッペンハイマー近似を用いているため、二原子分子 である水素分子単体における核磁気遮蔽定数は水素間の結合距離のみの構造分布に 依存して決まる。表1で真空の水素分子の経路積分分子動力学法による結果(PI)が古 典核近似(cla)と比べて、小さいのは、水素結合長が長い方に多く分布を持つことに対 応する。これは電荷のない力場ケージ内の水素分子についても同様で、真空中の水素 と力場ケージ内の水素の核磁気遮蔽定数の違いは力場に閉じ込められたことによっ て、水素結合長の分布が

短い方へ移ったことに 対応している。一方で、 H₂@C₆₀の水素の核磁気 遮蔽定数は他の二つと 比べて際立って大きい。 これは、C₆₀の電子状態 の寄与である。その他、 H/D 同位体効果の影響 や、構造分布と核磁気遮 蔽定数の関係について も報告を行う予定であ る。

Models	H2 (Cla)	H2 (PI)	H2 in VDW cage (Cla)	H2 in VDW cage (PI)	H2@C60 (Cla)	H2@C60 (PI)
NQE for H2	×	0	×	0	×	0
C ₆₀ static	×	×	0	0	0	0
C ₆₀ electronic	×	×	×	×	0	0
Advalate.		I SHOW THE REAL PROPERTY OF			and the second se	
wodels	H2 (Cla)	H2 (PI)	H2 in VDW cage (Cla)	H2 in VDW cage (PI)	H2@C60 (Cla)	H2@C60 (PI)
Sigma (ppm)	H2 (Cla) 26.470	H2 (PI) 26.193	H2 in VDW cage (Cla) 26.511	H2 in VDW cage (PI) 26.250	H2@C60 (Cla) 36.192	H2@C60 (PI) 35.630
Sigma (ppm) Upper error	H2 (Cla) 26.470 0.003	H2 (PI) 26.193 0.005	H2 in VDW cage (Cla) 26.511 0.003	H2 in VDW cage (PI) 26.250 0.003	H2@C60 (Cla) 36.192 0.010	H2@C60 (PI) 35.630 0.009

表 1 各種モデルにおける物理的効果の有無(上)とそれらを用いて 計算した水素原子の核磁気遮蔽定数 σ (下)。

参考文献

[1] K. Komatsu, M. Murata, Y. Murata, Science 307, 238 (2005).

[2] N. J. Turro, A. A. Marí, J. Y.-C. Chen, S. Jockusch, R. G. Lawler, M. Ruzzi, E. Sartori, S.-C. Chuang, K. Komatsu, Y. Murata, *J. Am. Chem. Soc.* 130, 10506 (2008).

[3] M. J. Gillan, *The Path-integral Simulation of Quantum Systems*, C. R. A. Catlow et al. (eds.), Computer Modelling of Fluids Polymers and Solids, 155-188.

[4] K. Suzuki, M. Shiga, and M. Tachikawa, J. Chem. Phys. 129, 144310 (2008).