1D07

Ultrafast vibrational dynamics of water at the hydrophobic ion/water interface revealed by time-resolved heterodyne-detected vibrational sum frequency generation (TR-HD-VSFG)

oAHMED, Mohammed; NIHONYANAGI, Satoshi; TAHARA, Tahei

(Molecular Spectroscopy Laboratory, RIKEN; Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics)

Introduction

Water at hydrophobic interfaces plays an important role in various chemical and biological processes such as protein folding, membrane formation, enzyme–substrate binding, etc [1]. Aromatic hydrocarbons are the building blocks of many hydrophobic surfaces and interact with water through delocalized π -electrons. The interaction of π -electrons of aromatic hydrocarbons with water hydrogen is known as π -hydrogen bonding [2]. Since these π -hydrogen bonds are believed to play crucial roles in biological processes, molecular level insight into the hydrogen bond dynamics of such π -hydrogen bonded water is important for understanding those phenomena. Here we report the hydrogen bond dynamics of the interfacial π -hydrogen bonded water at the tetraphenyl borate (TPB) ion/water interface by time-resolved heterodyne-detected vibrational sum frequency generation (TR-HD-VSFG) spectroscopy.

Experimental

The optical setup for TR-HD-VSFG measurements was described in detail previously [3]. Briefly, a narrow-band visible ω_1 pulse (center wavelength: 795 nm, bandwidth: 24 cm⁻¹, pulse width: 0.5 ps, *s*-polarized) and a broadband infrared ω_2 pulse (center frequency: 3450 cm⁻¹, bandwidth: 300 cm⁻¹, pulse width: 0.1 ps, *p*-polarized) were first focused into a y-cut quartz crystal and then onto the sample surface to generate sum frequency ($\omega_1 + \omega_2$, *s*-polarized). The former SFG generated from the quartz was used as a local oscillator (LO) and passed through a glass plate (2 mm) to be delayed with respect to the latter SFG generated from the sample interface. The time-resolved measurements were carried out with pump pulse (bandwidth: 100 cm⁻¹, pulse width: 0.2 ps, *p*-polarized, 20 µJ) centered at 3600 cm⁻¹ for the selective excitation of high frequency region of the OH stretch mode of interfacial water.

Results and Discussion

Figure 1A shows the $\text{Im}\chi^{(2)}$ spectrum of the TPB ion/water interface in the OH stretch frequency region. The sign of the $\text{Im}\chi^{(2)}$ of the OH stretch band of the TPB/ HOD-D₂O interface is positive, indicating that the water has the hydrogen (H-) up orientation at the anionic TPB interface. Moreover, $\text{Im}\chi^{(2)}$ spectrum of the OH stretch band is wider than other negatively charged interfaces and shows significant intensity around 3600 cm⁻¹, which is possibly due to existence of weak π -hydrogen bonds between phenyl rings of TPB and interfacial water. In order to further explore the nature of OH vibrations of water appearing at 3600 cm⁻¹, we carried out TR-HD-VSFG measurements for the OH stretch region at TPB/ HOD-D₂O interface with 3600 cm⁻¹ excitation to selectively probe the dynamics of water hidden in this region.

Figure 1. (a) Steady-state $Im\chi^{(2)}$ spectra of the TPB/ HOD-D₂O interfaces in the OH stretch region. (b) Schematic of the TPB/water interface. (c) TR-HD-VSFG spectra with 3600 cm⁻¹ excitation. Steady-state (SS) and pump spectra are also shown at the top.

Figure 1C shows time-resolved $\Delta \text{Im}\chi^{(2)}$ spectra at different time delays. The $\Delta \text{Im}\chi^{(2)}$ spectrum at 0 fs shows a narrow negative bleach (spectral hole) centered around 3550 cm⁻¹ accompanied by positive hot band centered around 3325 cm⁻¹. One important observation from the data in Figure 1C is that the band width of the spectral hole remains almost constant up to 700 fs. At the later time scales (\geq 300 fs), the intensity of negative bleach at 3550 cm⁻¹ decreases and lower frequency region becomes negative due to bleach recovery and subsequent thermalization process: the pump energy absorbed by the water is converted to the thermal energy, which increases local temperature and weakens the H-bond and causes blue shift of the OH stretch band. The constant band width of the spectral hole up to longer delay times suggest very slow/ negligible spectral diffusion (loss of ω_{pump} excitation memory) of high frequency OH stretch vibrations. This observation implies that water hidden in the high frequency OH stretch region (presumably π -hydrogen bonded water) is energetically isolated from the remaining H-up oriented H-bonded water molecules and interconversion between these two configurations is very slow or negligible. These results are quite different from other lipid-water interfaces.

References

1. Ball, P; Chem. Rev., 2008, 108 (1), 74.

2. S. Suzuki, P. G. Green, R. E. Bumgarner, S. Dasgupta, W. A. Goddard III and G. A. Blake; Science, 1992, 257, 942.

3. Ken-ichi Inoue, Satoshi Nihonyanagi, Prashant C. Singh, Shoichi Yamaguchi, and Tahei Tahara; J. Chem. Phys., 2015,142, 212431.