2F11

テトラエチレングリコール修飾による DNA 四重鎖の安定化機構の解明

(甲南大 FIBER¹, 神戸大院システム情報学², 東工大生命理工³, 甲南大 FIRST⁴) ○大山達也¹, 建石 寿枝¹, 田中成典²、村岡貴博³、金原数³、杉本直己^{1,4}

Investigation of stabilizing mechanism for G-quadruplexes by tetraethylene glycol modification

(FIBER, Konan Univ.¹, Grad. Sch. Sys. Inform., Kobe Univ.², Sch. Life Sci. Tech., Tokyo Tech.³, FIRST, Konan Univ.⁴) oTatsuya Ohyama¹, Hisae Tateishi-Karimata¹, Shigenori Tanaka², Takahiro Muraoka³, Kazushi Kinbara³, and Naoki Sugimoto^{1,4}

【序】

DNA は溶媒環境や配列により二重らせん構造以外にも、i-motif やヘアピン、四重鎖などの非 標準構造を形成することが近年報告されている。なかでも、DNA 四重鎖はテロメアやがん遺伝子 のプロモータ領域などのグアニンに富んだ配列において形成されやすく、四重鎖形成が転写や逆 転写、翻訳反応、テロメアーゼ伸長反応を阻害する。そのため、四重鎖の形成を制御する技術を 開発し、がんなどの治療薬の開発への応用が期待されている[1-4]。

我々はグアニン四重鎖の構造を安定化させるため、アンチパラレル型の DNA 四重鎖のループ 領域のチミン塩基にテトラエチレングリコール (TEG) を付加した DNA 四重鎖を設計した (Figures la and lb)[5]。この DNA 四重鎖の熱力学的安定性を測定した結果、側面にあるループ領域 のチミン塩基 (Figure la の T₄) に TEG を導入した DNA 四重鎖は安定性が大幅に向上した。一方、 中央のループ領域 (Figure la の T₇) に TEG を導入した DNA 四重鎖は、通常の DNA 四重鎖と変 わらない結果が得られた。本研究では、TEG が DNA 四重鎖の熱力学的安定性に与える影響や TEG

の位置による安定化の違いを解明 するため、分子動力学 (MD) 計算 とフラグメント分子軌道 (FMO) 法を用いて研究を行った。

【方法】

実験で用いたアンチパラレル型 の DNA 四重鎖は Protein Data Bank から入手し、これを TEG がない状 態の DNA 四重鎖構造 (Q1)の初 期構造とした。また、Q1の4番目 および7番目のチミンのメチル基 を TEG で修飾し、Q1-X4、Q1-X7の 構造を作製した。これらの構造の 周囲に水分子とカウンターイオン を付加し、298Kで35 nsの MD 計

Figure 1. (a) Schematic representation of the unmodified Gquadruplex (Q1) and (b) Chemical structure of TEG-modified deoxythymine (X). T_3 and T_4 , and T_{12} and T_{13} are in lateral loop regions (red), respectively. The sequence from T_7 to T_9 is a central loop region (blue). In Q1-X₄ and Q1-X₇, T_4 and T_7 were replaced with X, respectively.

算を行った。力場は DNA には AMBER99bsc0、X₄ および X₇ については GAFF 力場を用いた。また、階層クラスタリングにより、TEG の構造を 10 クラスターに分類した。クラスターの中でスナップショット数が多いクラスターの代表構造を Fragment molecular orbital (FMO) 法を用い、電子状態を MP2/6-31G(d)で計算した。フラグメントはヌクレオチドを塩基と骨格に、TEG については さらに、2 ないし4 フラグメントに分割して、DNA 四重鎖と TEG 間の相互作用を解析した。

【結果】

Q1-X₄とQ1-X₇の平衡状態にあ るスナップショットの TEG の構 造についてクラスタリングをし た結果、Q1-X4では約59.1%のス ナップショットが反対側のルー プ領域に向かって伸び、相互作用 している構造が得られた。これら 構造の相互作用を詳しく解析す るため、代表構造の FMO 計算を したところ、TEG のヒドロキシル 基が反対側の側面ループ領域の 骨格と2本の水素結合を形成し ていることが明らかになった (Figures 2c and 2d)。さらに、TEG の炭化水素が周囲の塩基と CH-π 相互作用や、双極子-誘起双極子 相互作用、CH-HC 相互作用で相 互作用していることがわかった (Figures 2b, 2c, 2d, and 2e)。これら の弱い相互作用が側面のループ

Figure 2. The structure of Q1-X₄ and enlarged views for details of interactions between TEG and nucleotides. (a) T₃ and G₅, (b–d) T₁₂, and (e) T₁₃. Green and cyan blocks indicate guanine and thymine, respectively. Representations of orange, red, blue, gray, and white balls illustrate phosphorus, oxygen, nitrogen, carbon, and hydrogen atoms, respectively. Green, pink, black, and blue dashed lines show hydrogen bonds, dipole–induced dipole, CH–HC, and CH– π interactions, respectively.

領域間をつなぐことにより、DNA 四重鎖の構造が安定化していると考えられる。また、DNA 四 重鎖内の G-カルテット間の相互作用を、Q1 と Q1-X4 で比較したところ、Q1-X4の π-π相互作用に よる相互作用が強くなっている結果が得られた。これらの構造を比較で、Q1-X4 の G-カルテット が歪み、TEG と反対側の G-カルテットとの距離が縮まっていることから、TEG が G-カルテット を押し上げることにより、G-カルテット間の距離を狭め、π-π 相互作用を強めていると考えられ る。本講演ではこれらの結果のほか、Q1-X7 との違いについても詳しく説明する。

【参考文献】

- [1] S. Nakano, D. Miyoshi, and N. Sugimoto, Chem. Rev., 114, (2014) 2733–2758.
- [2] M. Hagihara, L. Yamauchi, A. Seo, K. Yoneda, M. Senda, and K. Nakatani, J. Am. Chem. Soc., 132, (2010) 11171–11178.
- [3] H. Tateishi-Karimata, N. Isono, and N. Sugimoto, *PLoS One*, 9, (2014) e90580.
- [4] T. Endoh, Y. Kawasaki, and N. Sugimoto, Angew. Chem. Int. Ed., 52, (2013) 5522–5526.
- [5] H. Tateishi-Karimata, T. Muraoka, K. Kinbara, and N. Sugimoto, *ChemBioChem*, (2016) in press.

低温赤外分光法による(6-4)光回復酵素のDNA修復中間体の測定 (お茶大・生命情報¹、阪大院・基礎工²、名工大院・工³、米国・スク リプス研⁴)〇山田大智¹、山元淳平²、張宇³、岩田達也³、 E. D. Getzoff⁴、岩井成憲²、神取秀樹³

The intermediates in (6-4) photolyase repair process by Low-temperature FTIR spectroscopy. (Cent. Info. Biol., Ochanimizu Univ. Japan¹, Grad. Sch. Eng. Sci., Osaka Univ. Japan², Nagoya Inst. Tech. Japan³, The Scripps Res. Inst., USA⁴) oDaichi Yamada¹, Junpei Yamamoto², Yu Zhang³, Tatsuya Iwata³, Elizabeth D. Getzoff⁴, Shigenori Iwai², Hideki Kandori³

【序】我々生物がもつ DNA に紫外光が当たると細胞死やガンの原因となる DNA 損傷(主に、 シクロブタン型ピリミジンダイマー(CPD)と(6-4)光産物(Figure 1、左上)がある)が生じる。 光回復酵素とは、この DNA 損傷を同じ紫外光(あるいは青色光)を使って修復することができ る酵素である。これまでの研究により光回復酵素は以下のような特徴をもつことが知られている。 光吸収を担うのは酵素内部に結合した発色団フラビンアデニンジヌクレオチド(FAD)であり、 酸化型(FAD^{ox})から2回の光照射によりセミキノン型(FADH⁻)を経て触媒活性をもった完全 還元型(FADH⁻)を生成する。FADH⁻が基質存在下で光を吸収すると、基質への電子移動が起 こって修復が実現する。光回復酵素には、CPDを修復するCPD光回復酵素と(6-4)光産物を修復 する(6-4)光回復酵素(Figure 1、下)がある。(6-4)光回復酵素はCPD 光回復酵素よりも発見が 遅く、反応機構の理解も遅れている。CPDより複雑な構造を有する(6-4)光産物の修復においては

酸素の転位が必須であるが、修復における 反応中間体の構造解析は未だ皆無である[1]。

我々はフーリエ変換赤外(FTIR)分光法 を用いた構造解析を試み、これまで FAD^{ox} から FADH への光反応及び(6-4)光産物の修 復における FTIR 差スペクトルを得ること に成功し、反応機構解明に向けた端緒を開 くことが出来た[2-6]。今回我々は、Xenopus (6-4)光回復酵素に対して低温 FTIR 分光法 を用いた構造解析を試みたところ、(6-4)光 産物の修復中間体に由来する信号を含んで いると考えられる赤外差スペクトルを温度 依存的に捉えることに成功した。さらに、 ¹³C 標識(6-4)光回復酵素と¹⁵N 標識(6-4)光産 物、¹⁸O 標識(6-4)光産物をそれぞれ用いた 測定を行うことで、FTIR シグナルの帰属と 中間体の構造モデルを提案する。

【実験】*Xenopus* 由来の(6-4)光回復酵素の調製は以前に報告した方法を用いた[4]。¹³C 標識(6-4) 光回復酵素は、M9 培地(0.5 g/ 1L culture ¹⁴NH₄Cl、4 g/ 1 L culture ¹³C-Glucose を含む)を用いて 培養し精製した[6]。二本鎖 DNA は 14 塩基対からなり、配列中に合成した(6-4)光産物を含む。 塩基配列を以下に示す[7]。

また、¹⁵N 標識(6-4)光産物と¹⁸O 標識(6-4)光産物は、Figure 1 に示す青の N と赤の O の原子を 標識している。

FTIR 測定は、(6-4)光産物存在下で、*Xenopus* (6-4) 光回復酵素の再溶解試料を作製し、277 K で >450 nm の光照射により還元型を蓄積させた[2]。その後 77-277 K で目的の温度にセットし、温度が安定するのを待って>390 nm 以上の光を照射し、光照射前後の差スペクトルを得た。

【結果と考察】低温で測定した光照 射前後の差スペクトルは、277 K (修復前後の差スペクトル)とは異 なるものであった(Figure 2)。77 K では、1800-1700 cm⁻¹の C=O 伸縮 振動は変化したものの Amide I の領 域 (1700-1600 cm⁻¹) に変化が見ら れなかった。200 K 以上で Amide I 領域に変化が現れ、230 K では、さ らにリン酸(PO²⁻)の非対称伸縮振 動領域(~1230 cm⁻¹)に変化が見ら れた。250 Kを見ると 277 Kと類似 したバンドが見られた。1720 (+) cm⁻ 1のバンドは修復され新たに生じた チミンの $C_4=O$ (Figure 1、右) に由 来すると考えられているバンドであ る[2]。そのため、250 K でも修復反 応が起きていると考えられが、230 K 以下ではスペクトルの形が 277 K のものとは異なるため、これらの温 度では完全には修復がなされておら ず、修復中間体だと考えられる。ま た、光照射に伴い FADH から(6-4) 光産物に電子が供給され、FAD は 一電子酸化された FADH を形成す る。しかし、今回得られた低温のス

Figure 2 低温FTIR分光法を用いた(6-4)光産物の 修復中間体の測定結果

ペクトルには、FADH に特徴的な 1535 cm⁻¹のバンドが見られなかった。得られた低温スペクトルは、構造変化を誘起していることから電子移動反応は起きているが、電子は FAD に戻った後の構造状態を捉えていると考えられる。次に、同じ測定を¹³C 標識(6-4)光回復酵素についても行い、標識と非標識、両者のスペクトルを比較することで、1800-1700 cm⁻¹のバンドが(6-4)光産物の C=O 伸縮振動、1700-1600 cm⁻¹のバンドが(6-4)光回復酵素 の Amide I、低波数領域のバンドが DNA のリン酸骨格であると同定した。さらに、¹⁵N 標識(6-4)光産物と¹⁸O 標識(6-4)光産物でそれ ぞれ測定した結果も合わせて、各温度における中間状態の構造モデルを提案する。

[1] Sancar, A. Angew. Chem. Int. Ed., 2016, 55, 8502-8527.

[2] Zhang, Y., Iwata, T., Yamamoto, J., Hitomi, K., Iwai, S., Todo, T., Getzoff, E. D., Kandori, H. *Biochemistry* **2011**, *50*, 3591–3598.

[3] Zhang, Y., Yamamoto, J., Yamada, D., Iwata, T., Hitomi, K., Iwai, S., Todo, T., Getzoff, E. D., Kandori, H. J. Phys. Chem. Lett. **2011**, *2*, 2774-2777.

[4] Yamada, D., Zhang, Y., Iwata, T., Hitomi, K., Getzoff, E. D. and Kandori H. *Biochemistry* **2012**, *51*, 5774–5783.

[5] Yamada, D., Iwata, T., Yamamoto, J., Hitomi, K., Todo, T., Iwai, S., Getzoff, E. D., Kandori H., *Biophys. Physicobiol.*, **2015**, *12*, 139–144.

[6] Yamada, D., Yamamoto, J., Zhang, Y., Iwata, T., Hitomi, K., Getzoff, E. D., Iwai, S., Kandori H., *Biochemistry*, **2016**, *55*, 715–723.

[7] Iwai, S.; Shimizu, M.; Kamiya, H.; Ohtsuka, E. J. Am. Chem. Soc. 1996, 118, 7642–7643.

VSFG 検出赤外超解像顕微鏡法による 羽毛B-ケラチンの分子配向イメージング (東工大・化生研¹、東工大・生命理工²、岡理大・理³) ○渡瀬五常1、藤井正明1、酒井誠2,3

Orientation-sensitive imaging of feather β -keratins by VSFG-detected IR super-resolution microscopy (Laboratory for Chemistry and Life Science, Tokyo Institute of Technology¹, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology ², Faculty of Science, Okayama University of Science³) °Yukihisa Watase¹, Masaaki Fujii¹, Makoto Sakai^{2,3}

【序】 生体繊維の中でも物理的・化学的に頑丈で軽 量な羽毛は、羽軸を中心に羽枝、小羽枝へと分岐した 特殊な形状を持っており(図1)、それぞれの直径は~ 200 µm、~100 µm 及び~5 µm と明瞭な違いがある[1]。 各部位では、共通の主成分であるβ-シート構造を有す るケラチンタンパク質 (β-ケラチン)が階層的に収束

し、繊維状構造を形成している[2]。特に、羽軸では、 平行に配列した一対のβ-ケラチンが互い違いに重なったβ-ケラチンフィラ メント(図2)が、羽軸の伸長方向に沿って並んでいるといわれている[3,4]。 しかし、このβ-ケラチンの配向は透過型電子顕微鏡を用いた測定から推測さ れているため、実際の分子配向に関する情報は得られていない。また、羽軸 内におけるβ-ケラチンの空間分布についても、一般的な赤外顕微鏡の空間分 解能が低い(~10 μm) ために解明されていないことから、β-ケラチンの分 布および配向の分光学的な測定が求められている。

そこで、私たちは、赤外光と可視光による二次の非線形光学過程である振 動和周波発生(VSFG)法を顕微技術に応用し、空間分解能を~1.0 µm まで 向上した VSFG 検出赤外超解像顕微鏡を用いて、羽毛β-ケラチンの分布の 解明を試みた。また、VSFG 信号強度は VSFG、可視光そして赤外光の偏光

に影響し、分子配向によってその応答が変化すること[5]から、β-ケラチンの 分子配向の観察が期待される。本研究では、羽軸におけるβ-ケラチンの分布 に加え、VSFG 信号の偏光依存性を測定して分子配向を解明することを目的としている。

【実験】励起光源の可視光と赤外光を発生するために、再生増幅器によって増幅させたピコ秒レ ーザーシステム(パルス幅: 2 ps)を採用した。赤外光は 5500~9000 nm まで波長を可変できるよ うにし、可視光は 613 nm に固定して使用した。赤外光と可視光はビームコンバイナーで同軸に合 わせ、羽毛試料に対して垂直に照射し、発生した VSFG を反対側から対物レンズで集光した後、 赤外カットフィルターおよびバンドパスフィルターを介して ICCD カメラに結像した。偏光依存

図1:(a) 羽毛の全体像(破線:切断方 向)、(b) 拡大像(スケールバー:100 um)

> 図2:β-ケラチン フィラメント[3]

性測定では、可視光と赤外光は 1/2 波長板、VSFG は偏光フィルターを用いて、偏光を縦偏光および横偏光に制御して測定した。

羽毛試料の調製では、ガチョウの胸部の羽毛をエポキシ樹脂で包埋し、β-ケラチンの熱変性を 防ぐために 65 °C で約 18 時間熱重合させてサンプルチップを作製した後、ミクロトームで図 1-a 上に示した破線の通り羽軸の長軸方向に対して垂直に厚さ 3 μm に薄切した。切り出した羽軸横 断面は、カバーガラス上に半固定したものを測定に用いた。

【結果・考察】図3は、羽軸横断面に対して行ったβ-ケラチンのアミドΙバンド(CO str., 1630 cm⁻¹) における偏光依存性測定の結果である。画像上で横方向がX偏光、縦方向がY偏光とし、VSFG、 可視光、赤外光のそれぞれの偏光の組合せが、YYX (図 3-b)と XXY (図 3-c)の場合で測定した。 まず、図 3-b (YYX) により羽軸全体から強い VSFG 信号が観測されたことより、羽軸の大部分に β-ケラチンが分布していることの可視化に成功した。加えて、信号強度に濃淡が見えることから β-ケラチンが不均一に存在していることが分かった。一方、偏光の組合せを変えた図 3-c (XXY) では、VSFG 信号強度や分布が明瞭に変化した結果が得られた。この図 3-b, c の信号分布の差異の 原因を考察する。測定された異方性をストレートに解釈すると画面上でアミド I が横方向に振動 するようにβ-ケラチンが配向していると考えられる。もし図 2 のβ-ケラチンフィラメント構造が 正しいとすると、アミドIは同じ領域で横、縦方向に振動しているため、YYX と XXY では信号 分布に差が生じないはずである。したがって、β-ケラチンフィラメントは報告されている構造(図 2) ではなく、アミドΙが横方向に振動してβ-ケラチンが一律に整列していなくてはならない。一 方、この分光法はβ-ケラチンフィラメントが成す層と層の間に存在する界面に選択的に応答する。 最近、β-ケラチンフィラメントの集合体がレイヤー状の構造を取り、羽毛を形成しているという 報告がされた[2]。この構造を考慮すると、レイヤー間の界面は異方的であるため、その界面の偏 光依存性が顕著に現れた可能性も考えられる。すなわち、羽軸内部のβ-ケラチンは図2のような 構造で構成されているが、界面に関してはβ-ケラチンが規則的に一方向に整列している可能性が 考えられる。発表では、切断角度を変えて調製した羽軸縦断面に対する偏光依存性測定の結果を 交えて、β-ケラチンの配向の考察を報告する予定である。

図 3: (a) 羽毛横断面の透過像 (スケールバー: 40 µm)、 (b)アミドI バンド (1630 cm⁻¹) に 対する VSFG 像 (YYX)、(c) アミドI バンド (1630 cm⁻¹) に対する VSFG 像 (XXY) 【参考文献】

[1] D. Yildiz *et al.*, *J. Anim. Vet. Adv.*, **12**, 8, (2009). [2] T. Lingham-Soliar *et al.*, *Proc. R. Soc. B*, **1161-1168**, 277, (2010). [3] R. D. B. Fraser and E. Suzuki, *Polymer*, **35-56**, 12, (1971). [4] R. D. B. Fraser *et al.*, *J. Struct. Biol.*, **1-13**, 162, (2008). [5] Y. R. Shen and V. Ostroverkhov., *Chem. Rev*, **106**, 1140, (2006).

2F14 分子動力学シミュレーションを用いた水溶液表面の Aβ40 に 関する研究

(分子研,総研大) ○伊藤暁,奥村久士

Aβ40 on the solution surface studied by molecular dynamics simulations

(IMS, Sokendai) OSatoru G. Itoh, Hisashi Okumura

【序】 アルツハイマー病はアミロ イドベータペプチド (Aβ) が凝集し て不溶性のアミロイド線維を形成す ることで引き起こされると考えられ ている. Aβ は 39 から 43 アミノ酸 残基からなるペプチドである. 40 アミノ酸残基からなる Aβ40 はア ミロイド線維中で図1に示すような

構造を形成している. この構造では 10-22 番目の残基と 30-40 番目の残 基がそれぞれ分子間 β-シート構造

(β1 及び β2)を形成している [1].

近年の研究で, Aβのアミロイド線 維形成は糖鎖と脂質膜の界面,ある

図 1: アミロイド線維中での Aβ40 の構造.

いは水と空気の界面といった親水性/疎水性界面で促進されるということが明らかと なった [2,3]. また, 糖鎖/脂質界面存在下で単量体状態の時に, アミロイド線維中で は分子間 β-シート構造 β1 及び β2 を形成している残基の多くが界面近傍に存在してお り, ヘリックス構造を形成しているも明らかになった [4]. 水/空気界面で同様の構造 を形成するのか, さらに親水性/疎水性界面がアミロイド線維形成をどのように促進す るのかを明らかにするために, 水/真空界面存在下での Aβ の分子動力学シミュレーシ ョンを行った.

【シミュレーション条件】 水/真空界面をシミュレーション中で実現するために、シミ ュレーションボックスの半分にのみ水分子を配置した(図 2). Aβ40の初期配置とし て、図 2 に示すように、水/真空界面、水中及び真空中の 3 つを用いた.初期構造は伸 びた構造であり、それぞれの初期配置に対して、240 nsのカノニカル分子動力学シミ ュレーションを 3 回行った(合計で 9 回のカノニカル分子動力学シミュレーションを 実行).系の温度は 350 K に設定し、温度制御には能勢・フーバー法を用いた.シミ ュレーションボックスのサイズは 108 Åで、周期境界条件を用いた.系に含まれる水 分子の数はどの初期配置でも約 40,000 分子であった.静電相互作用の計算は particle mesh Ewald 法により行った.力場は AMBER parm99SB を用いた.比較のために、水/ 真空界面の存在しない条件下で、水中の Aβ40 に対するカノニカル分子動力学シミュ レーションも行った.

図 2: Aβ40 の 3 つの初期配置.

【結果】 水/真空界面存在条件下で カノニカル分子動力学シミュレーシ ョンを行った結果,図3に示すよう に,アミロイド線維中で分子間β-シ ート構造β1及びβ2を形成している 残基の多くが水/真空界面近傍に存 在していることが分かった.また,界 面近傍に存在する残基はヘリックス 構造を形成しやすいことも明らかと なった.これは,実験で明らかにさ れた糖鎖/脂質界面存在下での Aβ40 の構造と一致している.

さらに、本講演では、水/真空界面の 存在しない条件下でのシミュレーション結果との比較から、水/真空界面 で Aβ のアミロイド線維形成が促進 されるメカニズムについても議論す る予定である.

図 3: 各残基の界面からの距離. 赤線は糖鎖/ 脂質界面存在下での実験で界面近傍に存在 していた残基を表わす.

【参考文献】

[1] A. T. Petkova, W. Yau, and R. Tycko, *Biochemistry* **45**, 498 (2006).

[2] K. Yanagisawa, A. Odaka, N. Suzuki, and Y. Ihara, Nat. Med. 1, 1062 (1995).

[3] M. Hoernke, J. A. Falenski, C. Schwieger, B. Koksch, and G. Brezesinski, *Langmuir* 27, 14218 (2011).

[4] M. Utsumi, Y. Yamaguchi, H.Sasakawa, N. Yamamoto, K. Yanagisawa, and K. Kato, *Glycoconj. J.* **26**, 999 (2009)

創薬分子設計における FMO 法の役割

(日本大学松戸歯学部) 〇福澤薫

Role of FMO method in structure based drug design

(School of Dentistry at Matsudo, Nihon University) Kaori Fukuzawa

【序】

フラグメント分子軌道(FMO)法は、電子状態計算に基づいて、医薬品候補化合物とターゲット タンパク質との詳細な相互作用情報が得られることから、論理的創薬に適した新しい手法として 期待されている。FMO 法では、タンパク質ーリガンド複合体構造に対する量子化学計算を行い、 フラグメント間相互作用エネルギー(IFIE)を指標として化合物と各アミノ酸残基との相互作用を 定量的に評価することができる。また IFIE に基づいて、タンパク質との相互作用情報から特異 的な相互作用をもつ化合物を選別することができる。これらの手法は、これまでに多くの事例に 適用され成果を挙げてきた[1-3]。最近では、これらの研究成果を発展させた活動が急速に進展し つつある。本発表では、産学官連携の「FMO 創薬コンソーシアム」における研究開発状況や、創 薬プロジェクトの探索段階において FMO 法が担う役割について、最新の研究内容を紹介する。

【FMO 創薬コンソーシアム】

FMO 法を実用的なインシリコ創薬手法として 発展させるために、2014年11月に製薬企業14社、 IT 企業1社、アカデミア8機関を含む「FMO 創 薬コンソーシアム」[4]を設立し、産業界におけ る実応用に向けた活動を始めた。2015年度からは、 コンソーシアムを母体として、スーパーコンピュ ータ「京」の利用研究課題を推進している。2015 年度の「京」利用によって、FMO研究としては初 めて数百構造規模(具体的には 505 構造のタンパ ク質ーリガンド複合体)の計算実施に成功し、大規 模データに対する手法の汎用性の評価を開始した。

図 2 エストロゲン受容体と22 化合物の相互作用パターン

4つの重要なターゲットタイプ(キナーゼ、核内受容体、プロテアーゼ、タンパク質-タンパク 質問相互作用(PPI))のいずれ対しても、実験的な活性値と計算値との間に概ね相関があること が分かってきており、汎用性としては一定のレベルをクリアしていることが明らかとなる一方で、 妥当な複合体構造の作成、溶媒としての水の影響の評価、熱揺らぎの効果に対する統計性の加味 などが計算技術上の共通の課題であり、また複数のターゲットを用いた特異性の評価、あるいは 予測のためのドッキング構造の作成も創薬分子設計の観点から極めて重要な課題であることが示 唆された。これら課題の解決に向けた継続課題と、FMO計算結果による相互作用データベース構 築が進行中である。

【異分野融合研究における FMO 法の役割】

創薬プロジェクトの探索段階において、インシリコ技術による 効率化は重要な課題であり、実験結果に論理的な解釈を与えるこ とができる FMO 計算は異分野の研究者との融合研究においても 威力を発揮する。カテコール-O-メチル転移酵素(COMT)をター ゲットとした日本大学における抗 COMT 不全薬の開発研究では、 有機合成や標的タンパク質の精製、X 線結晶構造解析に加えて FMO 計算が取り入れられている。これらを融合した論理的な分子 設計の最新の状況についても紹介したい。

図 3 COMT の活性サイト

【おわりに】

FMO 創薬は、他のインシリコ手法および異分野との融合によってはじめて創薬に貢献できる手 法になりうる。上記の活動によって、将来的には、従来までの古典力学的手法では解決すること のできない、電子的な効果が重要となる場面に対して、飛躍的に精度の高い信頼性と有効性を持 った論理的創薬を可能にし、多くのターゲットに対する創薬を大きく効率化できると期待される。

【謝辞】

本研究は、JSPS 科研費基盤研究(C) 15K05397 および日本大学 平成 28 年度学術研究助成金(総 合研究)「抗 COMT 不全薬-新規腎保護薬を目指して」の助成を受けた。また、第 8 回資生堂女 性研究者サイエンスグラントおよび文科省「HPCI 戦略プログラム 分野4 次世代ものづくり」 からの支援を受けた。本研究の一部の計算には、平成 27 年度および 28 年度の HPCI システム利 用研究課題(産業利用枠)「HPCI を活用した FMO 創薬プラットフォームの構築」(課題番号 hp150160, hp160103)の中で、スーパーコンピュータ「京」を利用した。最後に、FMO 創薬コ ンソーシアムのメンバー全員に感謝を述べたい。

【参考文献】

- "The Fragment Molecular Orbital Method" edited by Fedorov, D. G. & Kitaura K.: (Taylor & Francis/ CRC Press, Boca Raton, FL, 2009).
- 2. Fedorov, D. G., Nagata, T., Kitaura, K., Phys. Chem. Chem. Phys. 14, 7562-7577 (2012).
- Tanaka, S., Mochizuki, Y., Komeiji, Y., Okiyama, Y. and Fukuzawa, K., Phys. Chem. Chem. Phys., 16, 10310-10344 (2014).
- 4. FMO drug design consortium (FMODD) http://eniac.scitec.kobe-u.ac.jp/fmodd/
- 5. BioStation (ABINIT-MP and BioStation Viewer) http://www.ciss.iis.u-tokyo.ac.jp/riss/dl