プロトン能動輸送の可能性がある配位高分子錯体のプロトン伝導特性 (北大・院総化¹、北大・院理²)〇太田悠基¹ 景山義之² 丸田悟朗² 武田定²

Proton conduction properties of coordination polymer complexes with a possible active-transport

(Graduate School of Chemical Sciences and Engineering, Hokkaido Univ.¹, Faculty of Science, Hokkaido Univ.²) •Ohta Yuki¹, Kageyama Yoshiyuki², Maruta Goro², Takeda Sadamu²

【序】自然界で見られるイオンや物質の能動輸送現象、つまり系の濃度勾配に逆らう方向への輸送現象は、膜たんぱく質プロトンポンプのように我々の生命活動において重要な役割を担っている。このような能動輸送現象の機構のモデルの一つとして、荷電粒子の輸送を束縛するポテンシャルが非対称でノコギリ状 (Ratchet potential)の系が提唱されている^{[1],[2]} (この機構を Ratchet mechanism と呼ぶ)。このモデルによると、Ratchet potential 下で 1)粒子が熱運動(ブラウン運動)によって拡散され、2)ポテンシャルに微弱な周期変化を与えることで能動輸送が起こる。

しかし、**Ratchet mechanism** によるプロトン能動輸送の実験的証明は行われていない。そこで 我々は、これらの条件を満たす人工的な系に交流電場を与えることで、プロトンの能動輸送を発 現させ、能動輸送現象に対する本質的な理解を目指している。

昨年度の分子科学討論会において、歪んだフレームワーク中に非対称な一次元プロトンチャン ネル有する高分子錯体(CH₃NH₃)₂[Fe₂(µ-O)(C₂O₄)2Cl₂]・nH₂O (1)^[3](Fig. 1)の合成、熱拡散によ るプロトンの伝導特性について報告した。今回はカチオン種が Na である高分子錯体(Na)₂[Fe₂ (µ-O)(C₂O₄)2Cl₂]・nH₂O (2)^[3]についてプロトン伝導特性を測定した結果と、錯体 1、2 の熱拡散 によるプロトン伝導についてより分子論的な側面から検討した結果について報告する。

Fig. 1 錯体 1 のチャンネルフレームワーク(白黒線)及び CH₃NH₃+と H₂O の水素結合鎖(紙面垂直) 【実験】合成は、反応溶液を恒温槽中で乾固と水蒸気による潮解を繰り返すことで行った。プロ トン伝導特性は、錯体 1、2 ともに粉末ペレット試料を用いて AC インピーダンス測定を行うこ とで調べた。測定温度、RH(相対湿度)、周波数、印加電圧はそれぞれ 30°C~70°C、30%~70%、 100 kHz~5 MHz、10 mV~1 V である。次に、水分子とプロトン伝導の関係性を明確にするた めに、錯体1について、温度 31 ℃一定下で RH をコントロールしながら TG 測定装置を用い て、定常状態における質量変化量を測定することにより各 RH 下における水分子含有量を調べ た。最後に、錯体1、2 の固体 ¹H-NMR スペクトル測定から水分子の、錯体2 の固体 ²³Na-NMR スペクトル測定から Na イオンの運動を調べ、分子レベルでのプロトン伝導への寄与につ いて考察した。

【結果・考察】錯体2についても錯体1と同様に、プロトンが熱運動によって拡散し、プロトン伝導を起こしていることを確認した。いずれの錯体の比抵抗値も 温度依存性は小さく、RH 増大に伴って指数関数的に 減少しており、水分子がプロトン伝導を支配している と考えられる。

また、TG 測定から得られた各 RH における水分子含 有量は、Langnmuir の吸着等温線で表す事ができ、こ のプロットから RH30%~70%における水分子含有量を

見積もったところ、Fig. 2 に示す比抵抗値 との関係がわかった。Fe2ユニットあたり 水分子 0.4 個の増大によって、比抵抗値が 一桁以上減少するという、水分子とプロト ン伝導の相関性を定量的に求めることがで きた。

固体¹H-NMR スペクトル測定からは、 錯体 1、2 ともに 210 K 近傍で水分子の運 動の熱励起が観測され、以前行った誘電率 測定からは、250~280 K 付近でこれとは

Fig.2 水分子含有量と抵抗値の関係

Fig. 3 固体 ¹H-NMR スペクトル測定

別の運動モードが観測された。ACインピーダンス測定を行った温度範囲では、水分子の C2 軸 周りの回転運動と C2 軸が動くような回転運動がプロトン伝導を助けしていると考えられる (Fig. 3)。また、錯体 2 の固体 ²³Na-NMR スペクトルの温度変化は、プロトンとの磁気双極子相 互作用の減少しか観測されず、Na イオンはほとんど並進運動していないと考えられる。そのた め、錯体 2 にでは、水分子の運動が主としてプロトン伝導に寄与していると考えられる。

以上の実験結果から、非対称一次元プロトンチャンネル有する高分子錯体 1、2 は、カチオン種 に依らず、プロトンが熱拡散によって輸送されいることがわかった。今回、プロトン能動輸送の 可能性を議論する上で必要となる、熱拡散による伝導特性を詳細に調べることができた。

現在は、単結晶試料を用いた伝導の異方性の測定や重水素体を用いた固体²H-NMR スペクトル 測定を行っている。

[1]R. Dean Astumian, *Science* 1997, *276*, 917-922.
[2] Muller, Anthonie W. J., *Entropy* 2009, *Vol.11*, 463-512
[3] Donatella Armentano *et al., Inorg. Chem.* 2008, *47*, 3772-3786.

PMMA 膜中における 4'-*N*,*N*-dimethylamino-3-hydroxyflavone の 励起状態分子内プロトン移動に対する電場効果

(九大院理¹, 愛知教育大², 千葉工大工³, 台湾国立交通大⁴東北大院薬⁵)

○古川一輝¹, 日野和之², 山本典史³, Kamlesh Awassthi⁴, 中林孝和⁵, 太田信廣⁴, 関谷博¹

External Electric Filed Effects on Excited-State Intramolecular Proton Transfer of 4'-*N*,*N*-dimethylamino-3-hydroxyflavone in PMMA films

(Kyushu Univ.¹, Aichi Univ. of Edu.², Chiba Inst. of Tech.³, National Chiao Tung Univ.⁵, Tohoku Univ.⁴)

oKazuki Furukawa¹, Kazuyuki Hino², Norifumi Yamamoto³, Kamlesh Awassthi⁴,

Takakazu Nakabayashi⁵, Nobuhiro Ohta⁴, Hiroshi Sekiya¹

【序論】分子の励起状態ダイナミクスを理解する上で,分子間相互作用が分子構造と励起状態ポ テンシャルにどのような影響を及ぼすかについて基礎的な情報を得ることが重要である.構造緩 和が制限される高分子膜中に分子をドープし,外部電場を印加して分光測定を行うことにより, 分子間相互作用が分子構造と励起状態ポテンシャルに及ぼす効果を調査することができる. 4'-N,N-dimethylamino-3-hydroxyflavone (DMHF,図 1)は,dimethylamino 基や phenyl 部位をもつ flexible な構造であり,これらの部位のねじれが励起状態分子内プロトン移動(ESIPT)や緩和ダイナ ミクスに影響を及ぼすと考えられる.そこで,本研究では,ポリメタクリル酸メチル(PMMA)中

に DMHF をドープし、外部電場が印加された場合のスペクトルの変化量(電場吸収および電場蛍光スペクトル)と蛍光減衰曲線の測定を行い、分子構造の変化や外部電場効果が DMHF の ESIPT にどのような影響を及ぼすかについて調査を行った.

【実験】PMMA のベンゼン溶液に DMHF を溶解させ, ITO 基板上にスピンコートして DMHF を含む高分子膜 を得た.高分子膜に外部電場を印加して,電場吸収及 び電場蛍光スペクトルを測定した.蛍光減衰曲線の外 部電場効果の測定は,励起光源としてフェムト秒チタ ンサファイアレーザーの2倍波を用い,外部電場印加 時と外部電場がない場合の時間相関光子計数法による 蛍光減衰曲線を30ミリ秒間隔で交互に測定し,それぞ れの信号を積算してスペクトルを得た.

【結果と考察】電場吸収スペクトルは吸収スペクトル の0次微分,1次微分,及び2次微分の線形結合で表さ れる.また,1次微分と2次微分の係数から電子遷移に 伴う電気双極子モーメントと分子分極率の変化量を見 積もることができる.図2にPMMA 膜中にドープした DMHF の電場吸収スペクトルを示す.吸収スペクトル

simu.

図 2. PMMA 中の DMHF の(a)吸収 スペクトルと(b)1 次微分, 2 次微分. (c)0.6 MV/cm 印加時の電場吸収ス ペクトル.

には、Normal (N)体由来の吸収が観測されている. 電場吸収ス ペクトルは吸収スペクトルの2次微分の形状を示している. し たがって、光励起に伴う電気双極子モーメントの変化(~13 Debye)が支配的であり、N体のS₁状態のCT性が大きいことを 示唆している. 1次微分の寄与は小さいが、分子分極率の変化 量は~81Å³と見積もられた.

図3に424 nm で励起した蛍光スペクトル及び電場蛍光スペ クトルを示す. 蛍光スペクトルには, N体と Tautomer (T)体由 来の二重蛍光が観測された. T体の吸収が観測されなかったこ とから, 光励起された N体からの ESIPT によって, T体が生 成される. 蛍光スペクトルを N蛍光と T蛍光に分割して, 電 場蛍光スペクトルを解析したところ, N蛍光と T蛍光の 0 次微 分, 1 次微分, 2 次微分の線形結合でそれぞれの成分が表され, N蛍光が~2% 増加し, T蛍光が~1% 減少していることが明ら

図 3. 424 nm で励起した PMMA 中の DMHF の(a) 蛍光 スペクトルと(b) 1.0 MV/cm 印加時の電場蛍光スペクトル とシミュレーション

かとなった.電場印加に伴う発光量の増減の原因として、蛍光を発する分子数の変化と蛍光寿命 の変化が考えられる.そこで、電場印加に伴うN体とT体の蛍光強度比の変化の原因を明らかに するため、電場が印加された場合(ON)と印加されていない場合(OFF)の蛍光寿命測定を行った.図 4と図5に424 nmで励起し、N蛍光(500 nm)とT蛍光(570 nm)の蛍光寿命を測定した結果を示す. N蛍光とT蛍光の蛍光減衰曲線は3成分の指数関数で再現され、ESIPTによる立ち上がりは観測 されなかった.電場がONとOFF時の強度比(*I*_F(*t*)/*I*₀(*t*))は、t=0において、N蛍光が1.0より大 きく、T蛍光は1.0よりも小さい.このことは、電場印加によってN体の光励起状態(FC状態)か らN体の発光状態の生成効率が増加しているのに対して、T体の発光状態の生成効率が減少して いることを示している.また、N蛍光とT蛍光の*I*_F(*t*)/*I*₀(*t*)がほぼ一定であることから、電場印加 に伴う蛍光寿命の変化は見られない.従って、外部電場によるESIPTの抑制がN蛍光とT蛍光の 強度比の変化の原因であると結論した.

図 4.424 nm で励起し 500 nm を検出した (a)電場 OFF (0 MV/cm) 時の DMHF の蛍光 減衰曲線と IRF, シミュレーション.(b)電場 OFF と ON(1.0 MV/cm)の蛍光減衰曲線の 比.

図 5. 424 nm で励起し 570 nm を検出した (a)電場 OFF (0 MV/cm) 時の DMHF の蛍光 減衰曲線と IRF, シミュレーション. (b)電場 OFF と ON(1.0 MV/cm)の蛍光減衰曲線の 比.

n-アルキルアンモニウムリン酸塩の
 強弾性相転移メカニズムと力学特性
 (東北大院・エ¹,東北大・多元物質科学研究所²)
 安田 陽¹,星野 哲久^{1,2},武田 貴志^{1,2},芥川 智行^{1,2}

Ferroelastcic Phase Transition Mechanism and Dynamic Characteristics of *n*-Alkylammonium Dihydrogen Phosphate

¹ Graduate School of Engineering, Tohoku University and ² IMRAM, Tohoku University <u>Akira Yasuda</u>¹, Norihisa Hoshino^{1, 2}, Takashi Takeda^{1, 2}, Tomoyuki Akutagawa^{1, 2}

【序】強弾性体では、結晶内の2つ以上のド メイン配向が外力によりスイッチング可能であ り、外力に対するドメイン比率の変化にヒステ リシスを示す。そのため、力学メモリーやセン サ材料への応用が期待されている。様々なアル キル鎖長を有する n-アルキルアンモニウム・リ ン酸塩(CnH2n+1NH3+・H2PO4, n = 1~9, 12)が 多段階の相転移を示し、常温で強弾性相を有す ることが報告されているが、1 ドメインスイッ チングや強弾性転移のメカニズムに関しては未

Figure 2 C₅ADP の結晶構造

解明の部分が多い。本研究では、炭素数が5で Figure 1 C₅ADPの偏光顕微鏡写真 ある *n*-ペンチルアンモニウム・リン酸塩(C₅ADP)の応力下におけるドメイン変化を 調査し、力学特性の定量化を行った。さらに、結晶構造、熱物性、誘電率および重 水素置換効果から、相転移の詳細な評価を試みたので報告する。

【結果・考察】H₂O 中でペンチルアミンとリン酸を等モル混合し、温度勾配法により無色透明のイオン性の C₅ADP 結晶を得た。C₅ADP 結晶において H₂PO₄-アニオンは *ac* 面内に水素結合シートを形成し、C₅H₁₁NH₃+カチオンはシートに対し垂直に配置していた(Figure 2)。偏光顕微鏡観察から C₅ADP 結晶は複屈折が異なる 2 つのドメイン A と B が *c* 軸方向に存在していることを確認した(Figure 1)。結晶の *c* 軸に対する圧縮-引張力に応じて C₅ADP 結晶の二種類のドメイン面積が変化した。

両ドメインの面積比を応力に対してプロットすることで強弾性体に特有なヒステリシス曲線を得ることに成功した (Figure 4)。

Figure 4 (a~d) 圧縮-引張力に対するドメインの変化、および(e) ヒステリシス曲線

相転移挙動を調査するために示差走査熱分析 (DSC)測定を行った(Figure 3)。DSC 曲線は昇 温過程で 356 K に可逆な相転移、387 K に不可 逆な相転移の存在を示した。温度可変偏光顕微 鏡を行ったところ、356 K 前後でドメインが消 失したため、この相転移は強弾性-常弾性転移 であることがわかった。この相転移に関して C₅ADP のペレット試料を用いて誘電率の温度 -周波数依存性を測定したところ1 kHz のとき、 相転移温度付近において誘電率が極大値を示し た。インピーダンス測定をもとに交流電気伝導 度(σ)を算出し、温度の逆数に対してプロットし たグラフを Figure 5 に示す。プロットは線型性 を示し、相転移温度におけるσの不連続な変化 と活性化エネルギー(E_a)の減少が見られた。こ

Figure 3 C₅ADP の DSC 曲線

れらの結果から、H₂PO₄-アニオンの水素結合 **Figure 5** 電気伝導度の温度依存性 シート内のプロトンの非局在化により、常弾性相でドメインが消失することが示唆 された。当日は、強弾性挙動の重水素置換効果および結晶構造との関連性について もあわせて報告する。

参考文献 [1] J. Kroupa, A. Fuith, Phys. Rev. B, 1993, 48, 4119-4121.

ジアリールエテンのずれ応力と可視光によるフォトクロミズム (山口東理大院・基礎工¹、山口東理大・工²)〇井上 健¹、舟浴 佑典²、井口 眞^{1,2}

Shear stress- and visible light- induced photochromism on diarylethenes (Tokyo Univ. of Sci., Yamaguchi Graduate School of Sci. & Eng.¹, Faculty of Engineering, Tokyo Univ. of Sci., Yamaguchi²) °Takeshi Inoue¹, Yusuke Funasako², Makoto Inokuchi^{1,2},

【序】

ジアリールエテンは固相で紫外光によって開環体から閉環体へ異性化し呈色する。さらに 閉環体は可視光によって開環体へと戻り退色することが知られている。我々は、ジアリール エテンに対するずれ応力効果を調べる過程で、CMTE(Fig.1)のフォトクロミズムがずれ応力 と 500 nm の可視光の組み合わせで誘起できることを見出した¹⁾。本研究では、ずれ応力下 での CMTE と PFCP(Fig.2)のクロミック挙動から、分光学的手法を用いて分子構造を調べ、 ずれ応力と異性化波長の光の関係を考察する。

【実験】

CMTE はヘキサンから再結晶し、乳鉢で粉末状にした試料を用いた。静水圧実験ではダイ アモンドアンビルセル (DAC)を使用し、SUS301 ガスケット (φ=0.5 mm)、圧力媒体には フロリナートを使用した。圧力はルビー蛍光法で決定した。ずれ応力実験では DAC 型回転式 高圧セルを使用し、上下のアンビル間で粉末状試料を加圧後、下アンビルを回転させること でずれ応力を発生させた。ずれ応力下の光照射実験は、朝日分光製 LAX-Cute を使用した。 分光測定には Lax-Cute と PMA-12 (浜松ホトニクス製マルチチャンネル分光器)を組み合 わせた可視領域の吸収スペクトルと Renishaw Ramascope System 1000 (励起光 780 nm) を用いたラマンスペクトルの測定を行った。

【結果と考察】

<u>CMTE のずれ応力と光の効果</u> CMTE の
 結晶は紫外光を含む 400 nm 以下の光で黄
 色の開環体から赤色の閉環体に異性化し、
 500 nm 以上の可視光で開環体へと戻るフ
 オトクロミズムを示すことが知られている。

<u>ずれ応力下のクロミズム</u> 黄色の開環体はずれ応力による色の変化は示さず、さらに、400 nm の光によるフォトクロミズムが抑制された。これに対し、500 nm の可視光の照射では、 暗赤色へと変化した。次に、応力を除くと、暗赤色は赤色に変わった。生成した赤色は 500 nm の光を照射することで黄色に戻った。この結果はずれ応力と可視光を組み合わせることによ

って開環体から閉環体への異性化の誘起ができること示している。また、可視光によるクロ ミズムは 500 nm の光で特異的に起こり、450 nm や 550 nm の波長の光では起こさず、ずれ 応力によって異性化波長が紫外から可視領域へと変化したことを示唆している。

ラマンスペクトル 常圧の開環体は分子中央とチオフェン環の C=C 結合のバンド(1569, 1492 cm⁻¹)が観察され、閉環体では光生成した六員環の伸縮振動の2本のバンド(1542, 1511 cm⁻¹)が開環体のバンドの間に現れる。ずれ応力下の暗赤色のラマンスペクトルは、閉環体に 特徴的なバンドと開環体のバンドが、応力によって高波数にシフトし、共存した状態が観察 され、振動スペクトルからも閉環体の生成が確認された。

静水圧下の光照射実験 CMTEの開環体は、2GPa以上で通常のフォトクロミズムは抑制さ れるが、5 GPa に加圧しても可視光によるクロミズムは観察されなかった。可視光による閉 環体への異性化には異方的なずれ応力が必要である。

PFCP のずれ応力と光の効果 PFCP は白 色の開環体と青色の閉環体の間でのフォト クロミズムが知られている。

白色の開環体はずれ応力によってフォトク

ずれ応力下のフォトクロミズム

Open-ring isomer(White)

Closed-ring isomer(Blue) Figure 2. Photoisomerization of diarylethene PFCP

ロミズムの抑制と、400 nm の可視光による緑色へのクロミズムを示した。生成した緑色は、 減圧することで青色になり、可視光によって白色に戻った。

分光測定 ずれ応力と 400 nm の光によって生じた緑色は、ラマンスペクトルの励起光によ り強い蛍光を発しスペクトルが得られない。この蛍光はずれ応力によって分子が歪んでいる ことを示している。可視吸収スペクトルにおいて、緑色の状態で吸収ピークが現れ、減圧後 の青色では低波長に移動した。このスペクトルの変化は、紫外光を照射した閉環体がずれ応 力によって緑色への可逆的な変化を示すときのスペクトル変化と同様であり、分光測定から 閉環体の生成が確認された。この結果は CMTE と同様にずれ応力と可視光による閉環体への 異性化を示し、ずれ応力による異性化波長の移動を示唆する。

本研究では、ジアリールエテン CMTE と PFCP において、ずれ応力下にある開環体は通 常の紫外光による閉環体への異性化は抑制され、代わりに CMTE では 500 nm、PFCP では 400 nm の可視光で閉環体へと異性化することを見出した。このことから、ずれ応力による異 性化波長の調節の可能性を期待する。ずれ応力下の異性化の機構は明らかになっていないが、 ジアリールエテンの結晶中でのフォトクロミズムには反応炭素原子間距離が関係しているこ とが報告されており²⁾、本研究での、ずれ応力下の可視光による異性化の誘起には、強い異 方的なずれ応力による分子構造の変化が関係していると考えられる。

1) T. Inoue, M. Inokuchi, Chem. Lett., 2015, 44, 911-913 2) S. Kobatake, K. Uchida, E. Tsuchida, M. Irie, Chem. Commun., 2002, 2804-2805 本研究は JSPS 科研費 25410101 の助成を受けたものです。

二次元位相変調器を用いた 固体パラ水素の振動波動関数の位相制御

(1奈良先端大物質, ²JST さきがけ, ³分子研) ○香月 浩之^{1,2}, 大森 健三¹, 堀江 徹¹, 柳 久雄¹, 大森 賢治³

Phase manipulation of vibrational wavefunction of solid para-hydrogen using 2D spatial light modulator

(¹NAIST, ²JST PRESTO, ³IMS) OHiroyuki Katsuki^{1,2}, Kenzo Ohmori¹,

Toru Horie¹, Hisao Yanagi¹, Kenji Ohmori³

【はじめに】

高度に波形整形されたパルスレーザーを用いて物質の量子状態の制御を行う手法はコヒー レント制御と呼ばれ、量子情報処理や化学反応制御において特定の量子状態を生成するため の基盤技術として重要である。我々の研究では、これまでに気相中の孤立ヨウ素分子や固体 パラ水素結晶の振動状態を対象として、時間遅延をつけたダブルパルスを光源として励起波 束間の干渉を制御する実験を行ってきた[1-3]。本研究では時間的なパルス整形に加えて、空 間位相変調器(LCOS·SLM)によりレーザー光の空間的な強度分布も制御することにより、異 なる初期位相状態を結晶中の空間的に離れた領域に生成し、時間遅延後に干渉測定によりそ の位相、強度分布を読み出すという実験を行った[4]。

【実験方法】

固体パラ水素結晶は固体凝縮系でありながら振動コヒーレンス寿命がナノ秒程度と長く、 量子干渉による量子状態制御を固体凝縮系に応用する対象として理想的である。ノーマル水 素ガスを極低温で触媒に接触させることでパラ水素に変換し、冷凍機中に固定した銅製セル 中にパラ水素ガスを流し込み、結晶を成長させた。本研究ではチタンサファイアオシレータ の出力の一部をストークス光(波長 830nm)として利用し、残りは OPO でポンプ光(波長 617nm)に波長変換して、誘導ラマン遷移によってパラ水素結晶のコヒーレント振動励起を行

った。励起される準位は遷 移選択則により v=1, J=0, k=0 にほぼ限定される。こ こで v, J は振動回転量子 数、k は振動バンド内の波 数ベクトルである。

それぞれのパルスを、時 間遅延をかけたダブルパ ルスとし、二度の励起間で 干渉を引き起こす。これら をポンプ1、ポンプ2、ス トークス1、ストークス2

4D06

図1 空間位相変調器とダブルパルス干渉計を組み合わせた光学系

パルスと呼ぶ。この際、それぞれのパルスを LCOS-SLM によって変調をすることで、焦点 面における位相と強度分布を作り出した。具体的な実験光学系を図1に示す。LCOS-SLM に 表示する位相変調マスクは、焦点面において各パルスが図2のような2x2のドットパターン に集光するように設計した。図1の光学系に対し、LCOS-SLM 表示部を四分割して個別のマ スクを用いることで、ポンプ光及びストークス光の各パルスに対して任意の初期位相が印加 できる。パラ水素結晶中に生成された振動強度分布は、プローブ光のアンチストークス散乱 によって読み出す。空間的な振動励起状態の分布を一括して読み出すために、プローブ光の 集光サイズはポンプ・ストークス光のパターン全体を覆うようにしておくことで、結晶中で の二次元振動波動関数分布をCCD カメラに結像して観測することが可能となる。

【結果と議論】

二回のラマン励起のタイミングを掃引しながらアンチストークス光を観測することで、8fs 周期のシグナルの振動が観測された。これは振動波動関数の位相の時間発展周波数に対応し ている。また、アンチストークス光として得られたシグナルの空間分布は、LCOS・SLMでデ ザインした入射光の強度分布を反映しており、空間的な強度分布情報を固体パラ水素中に保 持し、読み出せることが示された。さらに、ストークス光の位相分布を固定しておいて、ポ ンプ光の位相分布を制御することにより、ラマン遷移で書き込まれる振動状態波動関数の初 期位相分布を制御できることが波束干渉測定から導かれた。具体的には、4本の書き込みパ ルスのうち、ポンプ1のパルスに対してのみ、図2の4つのスポットにおける相対位相分布 が(0,0,0,0)(0,180,0,180),そして(0,270,180,90)となるような位相変調マスクを作成して量子 干渉実験を行った場合、アンチストークス光の空間分布には、印加した初期位相に応じて異 なる位相で振動する時間変動が観測された。実験結果から求められた初期位相値とマスクに 印加した位相設定値間にはよい一致が得られた。以上の結果から、任意の位相強度分布を持 った光を書き込みに用い、波束干渉で位相分布を強度分布に転写して読み出すことにより、 固体中の波動関数の空間分布を位相まで含めて読み出せることが示された。

本研究ではバルクな固体パラ水素が対象であるため、波動関数の振動周期は結晶中の位置 によらず一定であると仮定している。不均一な環境下にある対象に同様の手法を用いた場合

には、位置によって異なる周期で振動するシグナルを観測できると 期待される。不純物のドープの様な静的な不均一場や、外場による 過渡的な摂動の印加の様な動的な不均一場など、様々な効果を評価 する手法に応用できると期待している。

【参考文献】

- [1] H. Katsuki et al., Phys. Rev. A 76, 013403 (2007)
- [2] H. Katsuki et al., Phys. Rev. Lett. 102, 103602 (2009).
- [3] H. Katsuki et al., Phys. Rev. B 88, 014507 (2013)
- [4] H. Katsuki et al., submitted.

図2 2x2 集光スポット

低温アルカン固体で観測される HOMO-LUMO ギャップの減少についての研究 (近畿大・理エ¹, 関西学院大・理エ², 農研機構・食総研³, 分子研⁴) O森澤勇介¹, 立花慎², 池羽田晶文³, 江原正博⁴, 尾崎 幸洋²

Study of decrease in the HOMO-LUMO gap observed in solid alkanes

(School of Science and Engineering, Kinki Univ.¹,

School of Science and Technology, Kwansei Gakuin Unv.², NFRI, NARO³, IMS⁴) OYusuke Morisawa¹, Shin Tachibana², Akifumi Ikehata³, Masahiro Ehara⁴, Yukihiro Ozaki²

アルカンは比較的不活性な分子であり、このような飽和化合物の不活性な C-C, C-H 結合を活 性化させる手法が盛んに研究されているが、多くは触媒を用いた方法である。不飽和結合の結合 活性化においては、光によって結合に直接エネルギーを与えるという方法は、触媒を用いるより も手軽で選択性の高い活性化法として使われておいるが、飽和炭化水素化合物においてこの手法 は困難であった。その原因は非常に安定な電子状態によるものである。基底電子状態の安定性の 指標として HOMO-LUMO ギャップを用いれば、観測される液体アルカンの第一電子遷移バンド ピークは 8.2~8.4 eV であり、ショルダーとして低エネルギー側に観測される HOMO-LUMO 遷 移においても、7.5 eV と高い。このように、飽和化合物の単結合に光照射などによって直接的に エネルギーを与えるためには遠紫外領域の光エネルギーが必要であり、活性化のコントロールは 容易ではない。今回、我々はアルカンの電子状態が低温固体中で変化することを発見したので報 告する。低温固体中において、アルカンの HOMO-LUMO ギャップが 5.4 eV まで低下すること を発見した。このエネルギー差は紫外領域に相当し、容易に照射し結合にエネルギーを与えられ る波長であり、新たな C-H 活性化のパスを誘導する変化であると期待される。

直鎖状アルカンは炭素数に沿って第一電子励起バンドを示す。気相において、炭素数1~8のア ルカンが10.5~8.0 eVの励起エネルギーを持つことが透過吸収法で観測されている。一方液体に ついては、我々は減衰全反射遠紫外分光法を開発し観測することがに成功した。この結果炭素数 6~14 までのアルカンについて、8.5~8.2eV に観測されている。またこの遷移は、最近の量子化 学計算により、アルカン HOMO-1 から Rydberg3p への遷移であることが示された。¹⁾固相にお ける薄膜のアルカンの電子スペクトルが測定された例もあるが、薄膜の作製方式が異なると、異 なる結果をしめし、コンセンサスは得られていない。

純度の高い固体の許容電子遷移による吸収(ε =10⁴~10⁶ mol⁻¹L cm⁻¹)を観測するためには、実 効光路長を 100 nm 以下にする必要があり、限られた状況でしか観測されてこなかった。しかし、 近年紫外・遠紫外における減衰全反射分光法(ATR-FUV)の開発により、このような固体と内部 反射部材の界面 100 nm 以下の吸収スペクトルが容易に観測可能となった。²⁾今回我々は、炭素数 14 の直鎖アルカン *m*テトラデカンを室温から凝固点 5.86℃を超えて、-40℃まで冷却し、その後 室温まで温度を上昇させながら 145-300 nm における減衰全反射遠紫外スペクトルを測定した。 Fig1 に-38℃~15℃までの温度上昇によるスペクトル変化を示す。温度冷却過程においては過冷却 によるヒステリシスが観測されたが、それを除いては同様の結果を得た。

Fig1 に示すように、融点以上となる 15~6°Cにおいて、液体で報告されてい るスペクトルを示し、温度が下がると密 度の上昇し、153 nm 付近のピークがわ ずかに上昇する。融点以下の 5℃~0℃ において、153nm のピークは徐々に減 少し、170-180 nm におけるショルダー, 200 nm 付近のピークおよび 230 nm 付 近のショルダーが温度が低いほど大き くなる。0~-38 °C においては温度が低 いほど、170-180 nm のショルダーが減 少し、200, 230nm のピーク及びショル ダーはそれぞれ上昇する。短波長側の吸 収が観測されている。Fig1 には温度によ る、ベースラインの変動が観測されるた めに、それを取り除くために二次微分を 行った後、その2次微分係数を測定範囲 の最小値で割り規格化したもの、153nm、 230nm のピークについて、プロットし たものを Fig 2 に示す。同様のプロット を冷却過程において行ったところ、温度 の冷却・昇温過程において可逆的な変化 であることがわかった。Fig1,Fig2 に示 す通り、新たに現れる長波長側の吸収は

Fig.1 n-テトラデカン-38℃~15℃までの温度上昇に よる ATR-FUV スペクトル変化

Fig.2 各波長における最大値で規格化した 2 次微 分係数の温度依存性

液体の電子遷移を示す 153nm の吸収が凝固点以下の温度で急激に減少することにともなって現 れることから、この変化は凝固点のけるアルカン分子の結晶化に伴って起こる電子励起の変化で あると結論付けられる。

今回減衰全反射遠紫外分光法をもちいて、低温の n-テトラデカンの紫外・遠紫外における電子 状態の温度依存性を観測した。融点下において、スペクトルは液体から変化し、液体の第一吸収 バンドから 80nm 長波長に、つまり励起エネルギーとして 2.7eV も低いエネルギーに吸収が観測 されることが明らかになった。このように励起エネルギーが大きく低下して、紫外域にアルカン の吸収が存在すれば、より利用しやすい光によってアルカンの結合に直接エネルギーを与えて、 反応を誘起することができる。この状態がどのような構造の変化によるものなのかについて、観 測されたスペクトルと量子化学計算によるスペクトルシュミレーションから、議論する。 1) Morisawa Y.; Tachibana S.; Ehara M.; Ozaki Y., *J. Phys. Chem. A*, **2012**, 116, 11957-11964 2) Ozaki, Y.; Morisawa, Y.; Ikehata, A.; Higashi, N., *Appl. Spectrosc.*, **2012**, 66, 1-25

量子固体であるパラ水素結晶中の CH₃F に対する赤外高分解能分光 (東エ大院理工)〇川崎博之・溝口麻雄・金森英人

High resolution infrared spectroscopy of CH₃F in solid *para*-H₂ (Tokyo Institute of Technology) O<u>Hiroyuki Kawasaki</u>, Asao Mizoguchi, Hideto Kanamori

【序】*para*-H₂結晶中で自由回転する分子に対しての偏光依存性の測定は、結晶場による M 縮重の分裂を選択的に観測できるため、スペクトルの帰属や結晶中での分子の回転運動の理 解に非常に有用である[1].一方、結晶内で自由に回転ができない分子の系(CH₃F 等[2])に対す る偏光依存性は、スペクトルの分裂が観測されないため、未だに十分な報告がなされていな い.しかしながら、回転できない分子に対する偏光依存性の測定は、結晶内の分子の配向特 性を観測できるため、p-H₂結晶の異方性の理解を促進する重要な役割を果たすと期待される. 我々はこれまでに p-H₂結晶中に存在する *ortho*-H₂ とドープした CH₃F のクラスター, CH₃F-(o-H₂)_nについて QC レーザーを用いた研究を行ってきた.FTIR を用いた研究によって CH₃F の ν_3 バンド (C-F 伸縮振動) 付近には、o-H₂ の数 n に対応するピークが等間隔に観測さ れることが報告されている[3].我々はこの系に対して高い分解能と検出感度を持つ赤外 QC レーザー分光を行うことで、各 n のピークが非常に弱い複数のサテライトピークを持つこと を見いだし、それに対してモデルを提唱してきた[4].本研究ではサテライトピークを含めた 各ピークの偏光依存性を観測し、p-H₂結晶中での CH₃F の配向についての情報の獲得と、提 唱したモデルの確からしさの確認を目標とした.

【実験】サンプルは *p*-H₂ ガス (残留 *o*-H₂: ~100 ppm) に CH₄ を 20 ppm 程度と, CH₃F を 0.4 ppm 程度混入し, 2 K 程度に冷却した基板上に吹き付け, 7 K でアニールすることで作成した. *p*-H₂ 結晶の結晶構造 (hcp) を確認するため, FTIR を用いて CH₄ の*v*₄ バンド付近を観測した. 光源には Glober, ビームスプリッターは KBr, 検出器は HgCdTe を使用し, 分解能は 0.01 cm⁻¹ で測定した. その後, 中赤外 QC レーザー (1040 cm⁻¹付近) を用いて CH₃F-(*o*-H₂)_{*n*} クラスタ ーの*v*₃ バンドにおける *n* = 0 ~ 3 の領域を観測した. *v*₃ 振動は, 分子の *C*₃ 軸に対して平行に偏 光した光のみを吸収する. 使用した QC レーザーは直線偏光であるため, グリッドポーララ イザー (GP) 2 枚を用いて, 任意の偏光方向に選択し, 結晶基板に対して θ = 45° で入射し

た. ここで $\perp \varepsilon // \varepsilon$ は, hcp 構造をとる p-H₂結晶の c 軸は基板に対して垂直方向になっていると考えられるため[5], レーザーの偏光面が c 軸に対して平行 ($\beta = 0^\circ$)・垂直 ($\beta = 90^\circ$)により定義する (図 1). QC レーザーの強度は, クラスター構造への影響を無視できる 10 μ W 程度まで減衰し使用した. また,入射角度 θ を変えた実験として,基板に対して垂直 ($\theta = 90^\circ$)に入射した場合の偏光角 (β)依存性も測定した.

図1:結晶とレーザー偏光の関係

【結果と考察】

 CH_4 の v_4 バンドにおける P(1), Q(1), R(0), R(1)には, それぞれ fcc 由来のスペクトルが観測 される[6]. 不純物である *o*-H₂の濃度が低い *p*-H₂結晶は hcp 構造の方がより安定であるため, アニールを十分に行うと, 各枝における fcc 由来のピークは観測されなくなり, これにより結 晶のクオリティを判断することができる.本研究 では7Kアニールという先行研究と異なる方法を 使用したが、fcc由来のピークは観測されなくなっ た.そのため、p-H₂結晶は hcp 構造を持つと考え られ、その c 軸は基板に対して垂直であると判断 した.

CH₃F-(o-H₂)_nの n = 0 ~ 3 のサテライトを含むピ ークに対して偏光角(β)依存性を測定した.その 結果から⊥($\beta = 90^{\circ}$)と//($\beta = 0^{\circ}$)の強度比をプロ ットすると、 $\theta = 45^{\circ}$ 入射における結果では、いず れのnクラスターも1.45 近傍の値を示した(図2). また、 $\theta = 90^{\circ}$ 入射の結果では1近傍の値を取るこ とが分かった.全てのnで同じ値をとることは、 CH₃F の配向が最近接サイトに存在するオルト水 素の数に支配されないことを示唆する.また、サ テライトピークについては、n = 0 の⊥と//の光に よる偏光依存した強度変化は観測されなかった. この結果は、サテライトピークが M 縮重による分 裂ではないことを示しており、従来考えていたモ デルと矛盾しない結果である.

より詳しい議論をするため、GPの角度 β を10° (または30°)間隔で回し、スペクトルの強度変化 を観測した(図3).この結果、 $\theta = 90°$ 入射(図3 下)では1付近のほぼ一定値をとるのに対して、 45°入射(図3上)ではその強度がレーザーの偏光 方向に依存することが観測された.

結晶内の $CH_{3}F$ は C_{3} 軸と垂直方向には回転できない. $CH_{3}F$ が全て結晶の c軸に沿って配向すると仮定すると、 $\bot / / / の値は 0$ になる. また、 $CH_{3}F$

図2: L ///の強度比

入射角 θ = 45[°](四角)と 90[°](三角)における 偏光比

図 3:入射角 θ = 45°(上段)と 90°(下段) に対する偏光角 β の強度依存性

偏光角 $\beta = 0$ における Absorbance ($I_{\beta=0}$)を基準 にした, n = 0 (赤)と n = 1 (青)のピーク強度の GP の偏光角 β 依存性

の配向が結晶内で完全にランダムと仮定すると、 $\perp / / / の値は 1$ 、つまり GP の角度 β 依存性 は観測されないこととなる. 90°入射における観測結果から、GP の角度依存性が明確に観測 されないため、CH₃F は *c* 軸周りにランダムに配向していることを示唆する. 一方で、45°入 射の結果から、二つの仮定では実験結果を説明できないことが明らかとなった.

現在、これらの実験結果を再現するモデルの構築と、その配向に至る理由について考察を 進めており、講演ではその進捗状況を報告する予定である。

- [1] N. Toda, A. Mizoguchi, H. Kanamori, J. Chem. Phys. 132, 234504 (2010)
- [2] Y. -P. Lee, Y. -J. Wu, J. T. Hougen, J. Chem. Phys. 129, 104502 (2008)
- [3] K. Yoshioka, D. T. Anderson, J. Chem. Phys. 119, 4731 (2003)
- [4] H. Kawasaki, A. Mizoguchi, H. Kanamori, J. Mol. Spectrosc. 310, 39 (2015)
- [5] M. E. Fajardo, S. Tam, J. Chem. Phys. 108, 4237 (1998)
- [6] S. Tam, M. E. Fajardo, H. Katsuki, H. Hoshida, T. Wakabayashi, T. Momose, J. Chem. Phys. 111, 4191 (1999)

パーコレーション補正ランダムウォークモデルを用いた

アモルファス膜中のキャリア移動度の計算

Rapid estimation of charge carrier mobility in amorphous organic materials

using percolation corrected random-walk model

(SHARP Labs of America Inc.¹・Schrödinger, Inc.²・シャープ(株)/材料・エネルギー技術研究所³)

David R. Evans¹, Mathew D. Halls², OMasahito Oh-e (大江 昌人)³

E-mail: oh-e@cc.rim.or.jp

【序】

有機半導体膜(OSC)の多層構造からなる有機エレクトロルミネッセンス(OLED)などの有機半導体 デバイスにおいて、電子やホールのキャリア輸送は、デバイス特性を左右する重要な物性のひとつで ある.OSCのエネルギーレベルのみならず、キャリア移動特性の予測の信頼度を高めるスキームを構 築することは、OSCの材料設計とデバイス特性を向上させる上で重要な役割を果たす.

我々は、弱い分子間相互作用を示すアモルファス OSC 膜中のキャリア移動度を、できるだけ簡便 に見積り、材料間の比較を可能とすることを目的に、従来のキャリア移動度の計算スキーム[1-3]にパ ーコレーション理論により補正したランダムウォークモデルを適用した.

【計算】

密度汎関数法(DFT)及び分子動力学(MD)計算は, Schrödinger Materials Science Suite を用いた. DFT 計算による Marcus 理論の再配置エネルギー(λ)と電子カップリング定数(Hab)の導出は, Jaguar (Version 8.42)を利用した.計算には hybrid B3LYP 汎関数, MIDI! double-ζ分極基底関数を用いた. 分子の相対的配置構造の導出のための MD 計算は, Desmond MD program (Version 3.8)を使用した. 計算には OPLS2005 force field を用い, 温度 298.15K 設定で行った.

【結果・考察】

Marcus 理論[4]によりドナー/アクセプター分子間のホッピング速度 κ は、隣り合う 2 分子間に局在した HOMO/LUMO 間のホールや電子のレートである. κ は Marcus の式より、

$$\kappa = \frac{2\pi}{\hbar} \left(\frac{H_{ab}^2}{\sqrt{4\pi\lambda k_B T}} \right) \exp\left[-\frac{\left(\Delta G + \lambda\right)^2}{4\lambda k_B T} \right]$$
(1)

と表わされる.ここで、ΔG はキャリア移動の自由エネルギー、λ は再配置エネルギー、Hab は分子間 の電子カップリングである.結晶であれば隣接分子の配置が決まり、各分子間のホッピングが独立で あると仮定した拡散係数を得て、キャリア移動度を Einstein の関係から見積ることができる.しか しながら、アモルファス状態では隣接分子の配置を決める点で容易ではない.

アモルファスなバルクの平衡構造を得るために,ユニットセル中の 64 分子を構造最適化し,その 結果を初期構造とし,MD 計算を行った.計算により予想される全ての材料の密度は,一般的 OSC 材料の密度 1.1-1.3g/cm³の範囲に収束した.MD 計算により得られるバルクの平衡状態から,100の 隣接する分子ペアをランダムに抽出し, Hab とκを計算した.

単純な Einstein の拡散モデルは、分子間の電荷移動パスが全て"オープン"となっている極端な ケースと考えることができる.しかしながら、実際の電荷移動では、ある分子間のパスでは電荷移動 が起こらない"クローズ"の状態もある.したがって、"クローズ"状態も考慮にすることで、キャ リア移動度はより現実に近くなるようスケーリング係数を得ることができる.ここでパーコレーショ ン関数 θ(p)を、電荷移動媒体中の端から端までのパスが、途切れることなく"オープン"となる確率、 つまり端から端まで繋がるクラスターを形成する確率と定義する.ここで、 $p(0 は分子間の電荷移動パスが"オープン"である確率とする.また無限に大きなクラスターが出現する臨界現象を示す閾値確率 <math>p_c$ を定義し、 p_c より小さいpでは、 $\theta(p)=0$ であり、媒体において端から端まで途切れることなく"オープン"となるルートがないこと意味する. p_c の値は媒体の局所的構造に依存し、pが p_c に満たない、或いは超えるとパーコレーションの挙動は局所構造に依らない.OSC バルクモデルにおける全原子数とその動径分布関数を考慮すると、隣接サイトが6であることが分かり、アモルファス状態を歪んだ3次元キュービック相と見なすことができる.この場合 p=1/3であり、 $p_c=0.3116$ であることが知られている.したがって、また、 $\theta(p)$ とpは半経験的な臨界指数vを用いて、

$$\theta(p) = \left(\frac{p - p_c}{1 - p_c}\right)^{\nu} \tag{2}$$

と表され、vの値は $\theta(p)$ とpの数値計算により 決定される. 伝導度に関して、vの値は複雑系 シミュレーションにより、 $v=1.99\pm0.1$ と求めら れており[5],ここではv=2とした.したがって、 簡単なスケーリング係数として、Einstein の拡 散式に適用し、

$$\mu_{h,p} = \frac{eD}{k_{B}T} \cdot \theta(p) = \mu_{h,E}\theta(p)$$
(3)

ただし, $D = \frac{1}{n} \sum_{i} r_i^2 \kappa_i$

を得る. つまり, スケーリング係数を 9.97×10⁻⁴ と表すことに相当する.

Fig. 1 Comparison between calculated hole mobility and experimental mobility values for four OSC compounds (left) and correlation between experimental mobility and calculated hole reorganization energy (bottom right). 2D structures of the OSC compounds (top right).

このようにパーコレーション補正したランダムウォークモデルを用いた mCP, NPB, CzC 及び 2TNATA のキャリア移動度を表1にまとめた.また,これらを既知の実験値との比較を図1に示 す.4つの OSC 材料の移動度の序列が計算と実験で一致しているのみでなく,このモデルで得た 予測値は定量的にも実験値をよく再現している.図の右下にあるように,再配置エネルギーのみ では移動度は正しく評価できず,電子カップリングを含めることの重要性を示唆している.mCP と 2TNATA は再配置エネルギーに大幅な違いがあるのを反映して,ホール移動度でも大きな違い を示す.しかしながら,NPB と CzC を比較すると,再配置エネルギーの違いのみではホール移動 度の実験値を説明できず,電子カップリングを含めることで,ホール移動度を正しく評価できる ことを示している.

ここに示したモデルに基づく手法は、量子化学計算を用いる in silico 材料設計として、新たな OSC 材料を探索するツールとして有効なものである.

Table 1. Einstein mobility predictions without $(\mu_{h,E})$ and with $(\mu_{h,p})$ the percolation correction, and experimental zero-field hole mobility values $(\mu_{h,exp})$ for the four hole-transport OSC materials examined in this work.

	$\mu_{h,E}$ $(cm^3/V \cdot s)$	$\mu_{h,p}$ $(cm^3/V \cdot s)$	$\mu_{h,exp}$ $(cm^3/V\cdot s)$
mCP	2.03×10 ⁻¹	1.22×10 ⁻³	5.0×10 ⁻⁴
NPB	2.16×10 ⁻²	1.29×10 ⁻⁴	3.0×10 ⁻⁴
CzC	1.16×10^{-2}	6.95×10 ⁻⁵	8.0×10 ⁻⁵
2TNATA	1.13×10 ⁻³	6.75×10 ⁻⁶	2.8×10 ⁻⁵

文 献

- [1] B. Baumeier et al., J. Mat. Chem. 22, 10971 (2012).
- [2] T. Yamada et al., Organic Electronics 11, 255 (2010).
- [3] V. Rühle et al., J. Chem. Theory and Computation 7, 3335 (2011).
- [4] R.A. Marcus, Rev. Modern Physics 65, 599 (1993).
- [5] "Introduction to percolation theory". A. Bunde and J. W. Kantelhardt, in: "Diffusion in Condensed Matter", ed. J. Kärger, and R. Haberlandt, Seite 340-352 (Vieweg Verlag, Wiesbaden, 1998).

ピロン環を有する植物系バイオマス由来分子を用いた新規錯体の開発

(1法政大院理工学研究科、2法政大マイクロ・ナノテクノロシー研究センター、3森林総研)

o緒方 啓典^{1,2}、大塚 祐一郎³、中村 雅哉³

Development of new complexes using lignin biomass with pyrone rings

(Grad. Sch. Sci. and Engin., Hosei Univ.¹, Research Center for Micro-Nano Technology, Hosei Univ.²,

Forestry and Forest Research Instutitue³)

OHironori Ogata^{1,2}, Yuichiro Otsuka³, Masaya Nakamura³

【序】

樹木の細胞壁成分の約15~30%を占めるリグニンは、地球上で最も多量に存在する芳香族 系バイオマスであるが、分子構造が非常に複雑で分解され難く、一部が香料等として利用さ れているのみで多くが有効活用されていないのが現状である。リグニンを付加価値の高い機 能性材料に変換することで有効活用することができれば、石油の高度利用技術に代替できる バイオマス利用技術として循環型社会の形成に大きく貢献するものと期待される。2006年に パルプ廃液中から単離されたグラム陰性細菌である S. paucicimobilis SYK-6株を用いてリグニ ンの中間代謝物である 2-pyrone-4,6-dicarboxylic acid (PDC)を生産する技術が片山等により開発 された¹。PDC は、ピロン環に2つのカルボキシ基が付いた非対称な分子構造を持つ化合物 であるが、分極性が高い3つのカルボニル基、擬芳香族構造を持つことから、機能性有機材 料としての応用が期待されており、これまで PDC を基本骨格としたポリアミド、ポリウレタ ン、ポリエステル等の合成等が報告されている。

我々は、PDCの持つ電子受容性に着目し、様々なイオン、有機分子との錯体形成の可能性 を検討するとともに錯体合成を行っている。本研究では、種々の電子供与性分子との間に電 荷移動錯体(塩)についての構造および物性の特徴について報告する。

【実験】

電子供与性分子として TTF(Tetrathiafulvalene)、TMTTF(Tetramethyltetrathiafulvalene)、TMTSF(Tetramethyltetraselenafulvalene)、BEDT-TTF(Bis-(ethylenedithio)tetrathiafulvalene)を用いて電解法および拡散法により結晶作製を行った。 得られた結晶について、SEM による結晶形態観察、X 線結晶構造解析、電気伝導度測定 等、電子物性測定、ESR 分光法による磁気物性測定を行った。

【結果および考察】

Table.1 に Gaussian09 を用いた分子軌道法計算(DFT 法/B3LYP-6-311G(d))により求めた PDC および各電子供与性分子の HOMO 及び LUMO のエネルギー値を示す。これらの結果か ら、PDC および各電子供与性分子との間に電荷移動錯体を形成する可能性を示している。

	PDC	TTF	TMTTF	TMTSF	BEDT-TTF
HOMO/eV	-7.36	-4.70	-4.46	-4.60	-4.97
LUMO/eV	-3.26	-1.05	-0.97	-1.61	-1.22

Table 1. PDC および各電子供与性分子の HOMO および LUMO エネルギー値

Figure 1 に得られた結晶の典型的な SEM 像を示す。いずれの結晶においても、使用する 混合溶媒の種類および作製条件を変えることによって直径数 μm の繊維状結晶および針状結 晶もしくは板状結晶が得られること、さらに、ある種類の錯体結晶においては使用する溶媒 の濃度を変えることにより繊維状結晶の平均直径分布を制御することが可能であることが分 かった。

Figure 1. 各種電荷移動錯体結晶の SEM 像

Figure 2に TTF(PDC)₂針状結晶の結晶構造を示す。TTF 分子は *a* 軸方向にπ-πスタッキングによる一次元的なカ ラムを形成し、その間を埋める様に水素結合ネットワー クを形成していることが分かる。PDC は脱プロトン化に より多彩な水素結合ネットワークを構築することが可能 であり、同錯体の結晶構造を特徴づける要因となってい ることが分かった。

本講演では、一連の PDC 錯体結晶の構造および物性の 特徴について報告する。

References:

- Figure 2. TTF-PDC の結晶構造 (a 軸投影図)
- Y. Otsuka, M. Nakamura, S. Ohara, Y. Katayama, K. Shigehara, E. Masai, M. Fukuda, J. Enviromental Biotechnology, Vol.6, No.2, 93-103, 2006.