1A02 レーザー分光法を用いた 気相プロトン化ヒスチジンの水素結合構造の研究

(北里大院理1・北里大理2) 〇近藤誠1・笠原康利2・石川春樹2

Laser spectroscopic study on the hydrogen-bonding structure of protonated histidine in the gas-phase

(Kitasato Univ.) OMakoto Kondo, Yasutoshi Kasahara, Haruki Ishikawa

【序】ヒスチジン(His)は、側鎖にイミダゾール環を有するアミノ酸で、しばしば酵素反応における活性中心となる。このことから、生物学的メカニズムにおいて His の分子間相互作用および分子構造が重要な役割を果たしていることが考えられる。我々は His の分子間相互作用および分子構造の詳細な知見を得ることを目的として、プロトン化ヒスチジンーメタノールクラスター、HisH⁺-(MeOH)_n (n = 1, 2)の赤外スペクトル測定と理論計算により構造決定を行ってきた[1]。

n=1の赤外スペクトルおよび計算による 安定構造をFig.1に示した。n=1は,MeOH が側鎖のイミダゾール環またはカルボキシ ル基(COOH)に水素結合する二種類の安定 構造が存在することが分かった。また, HisH⁺内のプロトン(H⁺)付加位置がそれぞ れイミダゾール環のNまたはアミノ基とな ることが計算から確認されたことから, MeOH付加位置およびH⁺付加位置の間の相 関が示唆された。

この相関に対する考察のため, HisH⁺に親 和力が異なるプロトン受容分子を付加させ た計算を行った。その結果, 詳細は講演で述 べるが, 分子間水素結合位置によって H⁺付

加位置の安定性が決まることが明らかになった。この考察の過程でプロトン親和力の大きな イミダゾール(Im)やトリメチルアミンが HisH⁺に水素結合すると,それらの分子が HisH⁺か ら H⁺を引き抜くと共に,中性 His が双性イオンとなる安定な構造が得られた。これまで気相 分子クラスターにおける双性イオン生成の報告は少ない。そこで本研究では,双性イオン形 成が計算で予想される Im をプロトン受容分子として用いた His-H⁺-Im クラスターの赤外分 光から双性イオン構造形成について研究を行った。以後,側鎖のイミダゾール環およびプロ トン受容分子のイミダゾールを区別するためにそれぞれを ImHis, ImB とよぶ。

【実験】本研究ではヒスチジン塩酸塩/イミダゾール混合メタノール溶液を試料として、エレクトロスプレーイオン化法により His-H⁺-Im クラスターを生成した。実験には既報のイオント

ラップ分光装置[2,3]を用いた。キャピラリーを通して真空槽に導入されたイオンを,オクタ ポールイオンガイドでトラップした後,イオンベンダーで90°方向に誘導し,第一の四重極質 量選別器で目的のクラスターを選別した。その後,赤外光を照射し,赤外光解離分光を行った。 赤外吸収が起こるとクラスターが振動励起し,解離して HisH⁺を生成する。この HisH⁺を第 二の四重極質量選別器で選別し検出した。また,量子化学計算による構造最適化および基準 振動解析を行った。計算レベルは M05-2X/6-31++G(d,p)とした。実測の赤外スペクトルと計 算による予測を比較し,構造決定を行った。

【結果と考察】まず、質量スペクトルの測定により His-H⁺-Im クラスターの生成を確認した。 次に、His-H⁺-Im について、3400 - 3650 cm⁻¹の領域の赤外スペクトルを測定し、Fig. 2 に示し

た。この領域には His の NH/OH 伸縮 および Im の NH 伸縮が現れる。その 結果, 3498 cm⁻¹ に明確なバンドを確 認した。これは, その波数から Im_{His} および Im_B に存在する free NH 伸縮 振動バンドが重なって現れたものと 容易に帰属できる。量子化学計算によ り得られた最安定構造を Isomer A と し, その構造と赤外スペクトルを Fig. 2 に示している。Isomer A では, Im_B が HisH⁺の COOH から H⁺を引き抜 き, His が中性になっている。そのた め, COOH の free OH 伸縮振動のバン ドは存在しない。中性 His は双性イオ

ン構造をとっている。計算による2番目に安定な構造 Isomer B は、Im_{His}の NH に Im_Bがプ ロトン受容体として分子間水素結合し、さらに Im_{His}の N に H⁺が付加し、アミノ基と分子内 水素結合した構造である。この構造では COOH の free OH 伸縮振動バンドが現れる。しか し実測のスペクトルでは、その位置にはバックグラウンドの揺れに埋もれる程度の信号しか 認められず、Isomer B は非常に少ないことがわかる。これは、計算によるエネルギー差(ΔE_0 = 2.6 kcal/mol)と矛盾せず、我々の実験条件では双性イオン構造の Isomer A が優勢に存在 していると結論できる。

本研究で得られた赤外スペクトルは気相における双性イオンの形成を強く示唆しており, 貴重な例である。講演では, HisH⁺水素結合クラスターにおける水素結合位置と H⁺付加位置 の相関に対する考察も併せて報告する。

【参考文献】

[1] 近藤 誠, 笠原 康利, 石川 春樹 第8回分子科学討論会 2P013 (2014)

[2] Fujiwara, et al., J. Phys. Chem. A, 113, 8169 (2009).

[3] Ishikawa, et al., Chem. Phys. Lett. 514, 234 (2011).

(東工大資源研¹, 北里大理²) ○松山沙織¹, 関口翼², 宮崎充彦¹, 石川春樹², 藤井正明¹

Real-time observation of intramolecular charge transfer reaction and solvent reorientation of (p-cyanophenyl)pentamethyldisilane-water by picosecond time-resolved spectroscopy

(Chemical Resources Laboratory, Tokyo Institute of Technology¹, School of Science, Kitasato University²) Saori Matsuyama¹, Tsubasa Sekiguchi², Mitsuhiko Miyazaki¹, Haruki Ishikawa², Masaaki Fujii¹

【序】分子に光を照射することにより生じる光化学反応の初期過程では、分子内部の電荷分布が 変わり、周辺の溶媒分子の配向も変化する。電荷移動に対する反応系の応答を分子論的に理解す ることは、光化学反応を理解する上で重要である。励起状態分子内電荷移動(ICT)反応は、分子内 部の電荷分布が大きく変化するため、電荷移動過程を研究する良いモデル系である。しかし、溶 液中では、分子の周りには反応に直接関与しない溶媒分子も多数存在しており、特定の分子の挙 動を選択的に観測することは困難である。そこで、ジェット冷却された分子クラスターを用いる ことにより、溶媒分子近傍の水和状態を孤立気相系に抽出し、光化学反応を分子レベルで直接観 測することを試みる。

図 1 に示す(p-シアノフェニル)ペンタメ チルジシラン(CPDS)は、光励起によりジシ ラニル基の σ_{si-si} 軌道からシアノフェニル 基の π 軌道へと電子が移動し、気相中でも ICT 反応が生じることが知られている[1]。

図1CPDS の分子内電荷移動反応における構造変化

その際に逆電荷移動反応を防止するために、シアノフェニル基とジシラニル基の間の単結合が90 度ねじれる大きな構造変化を伴うことも確かめられている[1]。また、水が1分子配位した水和ク ラスター(CPDS-W)では、電荷移動、ねじれとそれに伴う水分子の再配向(LE→CT₁)が起き、その 後さらに水分子の大きな配向変化(CT₁→CT₂)が起こる2段階反応になることがナノ秒時間分解ス ペクトルから見出されている[2]。しかし、最初の過程はピコ秒スケールで起こるため、これら3 つの反応がいかに進行するかは明らかではない。そこで、本研究ではそれぞれの過程によって特

徴的なシフトを示すことが報告されている分子振動(vcn(電荷移動)、vch(ねじれ)、voh(溶媒再配向))の時間変化をピコ秒時間分解赤外分光により実時間 追跡し、CPDS-Wの光励起反応において3つの過 程がどのように相関し反応が進行するかを明らか にすることを目的とした。

【実験】図2にピコ秒時間分解赤外分光の励起ス キームを示す。超音速ジェット中に生成した

図2 ピコ秒時間分解赤外分光のスキーム

CPDS-Wを2つのピコ秒紫外光 (vexc、vion)により、S₁を経由してイオン化し、そのイオン強度を モニターしておく。vionを照射する前、vexcを照射してから遅延時間Δt後に赤外光(virk)を照射し、 波長掃引する。赤外光の波長とクラスターの振動準位が共鳴すると、クラスターが振動励起によ り解離し、モニターしているイオン強度が減少する。よって、S₁励起後の過渡赤外スペクトルを イオン量の減少(dip)として観測することができる。

【結果と考察】図3にvexcをCPDS-Wの originバンドに固定して得た時間分解赤外 スペクトルを示す。比較のため、Ishikawa らがナノ秒パルスレーザーを用いて*∆t* = 0 ns において測定した赤外スペクトル [2] を1番上に示す。 v_{exc} 照射前の $\Delta t = -45 ps$ の赤外スペクトルは So 状態におけるナノ 秒のスペクトルと一致する。励起後∆t=5 ps ではvoH にわずかな低波数シフトが見 られ、VCN は消失する。これより LE 状態 が生成したことがわかる。この特徴は徐々 に消滅していき、 $\Delta t = 55 \text{ ps}$ では CT_1 に対 応する大きくシフトしたバンドが現れる。 新たなバンドが見つからなかったこと、ま た次に述べる時間発展より、LE 状態の減 少速度と、CT₁状態の増加速度が一致して いることから、反応は S₀→LE→CT₁ と進 行し、LE-CT1間に新たな中間体などは存 在しないことが確かめられた。

さらに、それぞれの反応の時定数を求めるため LE 状態、CT₁状態の水素結合 OH(voH^{HB}(LE)、voH^{HB}(CT₁))、 CT₁ 状態における CN(vcN(CT₁))伸縮振動バンドにお いて測定した赤外吸収強度の時間発展を図4に示す。 フィッティングの結果、vcN、voHの時間変化はそれぞ れの時定数約480 ps、約420 psの単一指数関数で表 された。これより水の再配向運動は電荷移動と同等、 もしくは若干速いことがわかる。講演ではねじれ運 動を含め、電荷移動反応における各反応の関係につ いて議論したい。

【参考文献】

[1]H. Ishikawa, et al., J. Phys. Chem. A 109, 8959(2005).
[2]H. Ishikawa, et al., Phys. Chem. Chem. Phys. 9, 117(2007).

図3 CPDS-W のビコ秒時間分解赤外スペクトル う ノ秒レーザーを用いて測定した赤外スペクトル[2] も合わせて示す。点線は時間発展で用いたバンドで ある。

図 4 赤外光の波長を(a) v_{OH}^{HB}(LE)、 (b) v_{OH}^{HB}(CT₁)、(c) v_{CN}(CT₁)に固定した赤 外吸収強度の時間発展

気相における水素結合クラスターの構造とダイナミクス

(九大院理) 関谷博

Structures and dynamics of hydrogen-bonded clusters in the gas phase

(Fac. Sci. Kyushu Univ.) Hiroshi Sekiya

【序】プロトン・電子移動は化学,生物において最も基礎的な素過程であり,分子科学の重 要課題の一つである.気相におけるレーザー分光は,クラスターサイズと電子・振動状態を 選別できるので,クラスター構造とダイナミクス研究のための有力な手段である.我々は超 音速ジェット装置と様々なレーザー分光法を組み合わせて孤立分子と分子クラスターにおけ る水素結合とプロトン移動の研究を1980年代に開始した.単一プロトン移動のトンネル効果 の研究に始まり,DNAモデル塩基対の励起状態二重プロトン移動,分子間水素結合を介した 多重プロトン移動の研究へと系統的に研究を展開した.また,光誘起水分子のマイグレーシ ョンなど未解明の反応ダイナミクスの研究に挑戦した.固相における分子間相互作用が分子 構造と励起状態分子内プロトン移動(ESIPT)にどのような効果を及ぼすかについても研究を 行った.これらの研究から得られた主な成果について紹介する.

【実験】超音速ジェット冷却された水素結合二量体及び水和クラスターについて, 蛍光分光法, 多光子イオン化分光法, 赤外イオン・蛍光ディップ法, ホールバーニング分光法などの 周波数領域の分光法を用いた. 7-アザインドール二量体(7AI₂)と7-アザインドール・水 クラスター[7AI(H₂O)_n(n=2,3)]については, ピコ秒ポンプ・プローブ分光も行った.

【結果と考察】

 (1) DNAモデル塩基対の励起状態二重プロトン移動 7-アザインドール二量体(7AI2)は光励起で二つのプロトンが移動する励起状態二重プロトン移動(ESDPT;
 図 1)を行う系として長い間注目を集めてきた. Zewailらは気相でフェムト秒時間分解光イオン化の実験を行い,二つのプロトン移動が一個ずつ段階的に進む機構を主張した

 $\boxtimes 1 \quad 7AI_2 \mathcal{O} ESDPT$

[1]. 一方,溶液のフェムト分光から中間状態を経由しない協奏的機構が主張され[2],世界 的に激しい論争が起こった.我々は,7AI2のH/D同位体の電子スペクトルの測定による反 応速度定数のH/D同位体効果、及び振電状態を選択した励起状態の減衰時間の決定に基づ いて協奏的機構でESDPTが進行すると結論した[3,4].その後,7AI2のESDPTが協奏的 機構で進行することが,複数のグループによる量子化学計算によって支持されている[5,6]. (2) 溶媒和クラスターにおける励起状態多重プロトン移動

蛍光分光法とピコ秒ポンプ・プローブ分光法を用いて[7AI(H₂O)_n(n=2,3)], 7AI(alcohol)₂ (alcohol: CH₃OH,C₂H₅OH)の励起状態多重プロトン移動について調査した. 7AI(H₂O)₂ と 7AI(alcohol)₂の励起状態三重プロトン移動(ESTPT)が協奏的機構で起こることを明らか

にした. 7AI(H₂O)₂の分子間伸縮振動モード (σ (1))またはその倍音(2 σ (1))を励起する と励起状態の減衰時間が短くなることから σ (1)がESTPTを促進させるモードであること を明瞭に示した(図 2). 7AI(H₂O)₃を光励起 すると,励起状態四重プロトン移動より水素 結合ネットワークの再配列が優先的に起こ り,環状構造の水分子のネットワークをもつ 異性体が生成する[7,8].

図2 減衰時間の励起エネルギー依存性

(3) 光誘起水分子マイグレーション

アセトアニリド・水,ホルムアニリド・水の1:1クラスターにおいて,水分子は CO 基ま たは NH 基に結合する.中性状態において C=O 基に結合していた水分子が光イオン化後に NH 基にマイグレーションすることを赤外スペクトルの観測によって明らかにした [9,10]. トリプタミン・水[11],及び5-ヒドロキシインドール・水の1:1クラスターにおいても 水分子のマイグレーションを観測し,そのメカニズムを解明した.

(4) 分子間相互作用が励起状態プロトン移動に及ぼす効果

クラスターと凝縮相との接続はクラスター科学の重要な課題の一つである.分子間相互作 用が励起状態分子内プロトン移動(ESIPT)及び ESDPT にどのような影響を及ぼすかについて 研究を行った. PMMA 膜中の 4'-N,N-dimethylamino-3-hydroxyflavone (DMHF)の ESIPT の外部 電場効果による制御に初めて成功した.また,低温アセトニトリルの固相-固相相転移が結 晶中にドープされた DMHF の構造緩和と ESIPT に大きな影響を与えることを示した.

水素結合クラスターの研究は,迫田憲治博士(九大)と行った. Gustavo A. Pino 教授(Univ. Nacional de Córdoba), Christophe Jouvet 教授(Univ. d'Aix-Marseille) と 7AI(H₂O)_n(n=2,3)のピ コ秒時間分解分光の共同研究を行った. これらの方に感謝申し上げる.

(参考文献) [1] A. Douhal et al. *Nature* **378**, 260 (1995). [2] S. Takeuchi, T. Tahara, *Chem. Phys. Lett.* **277**, 340 (1997). [3] Sakota et al. *J. Phys. Chem. A* **109**, 5245(2005). [4] 関谷博, 迫田憲治, Molecular Science **8**, A0071(2014). [5] X.Yu et al. *J. Chem. Theory Comput.* **7**, 1006 (2011). [6] K. Ando et al. *Phys. Chem. Chem. Phys.* **13**, 11118 (2011). [7] G. A. Pino et al. *Phys. Chem. Chem. Phys.* **13**, 6325 (2011). [8] 関谷博, 迫田憲治, 分光研究, 64巻2号346 (2015). [9] K. Sakota et al. *J. Phys. Chem. A* **115**, 626 (2011). [10] T. Ikeda et al. *J. Phys. Chem. A* **116**, 3816 (2012). [11] K. Sakota et al. *J. Chem. Phys.* **137**, 224311 (2012).

5-ヒドロキシインドール水和クラスターカチオンにおける水和構造組み換えの観測 (九大院・理) 〇池田 貴将、迫田 憲治、関谷 博

Rearrangement of hydrogen bond network in mono-hydrated 5-hydroxyindole cluster cation (Kyushu Univ.) OTakamasa Ikeda, Kenji Sakota, Hiroshi Sekiya

【緒言】様々な化学反応場の中でも、水溶液は最も普遍的なものの1つである。水溶液中において、溶 質分子と水分子は水素結合などの相互作用を介して水和構造を形成する。その中で、溶質分子の構造 に大きく影響を与える第一溶媒和圏の水和構造とそのダイナミクスに関する知見は、化学反応を分子 レベルで理解する上で極めて重要である。水溶液では系内の水分子数が膨大なため、第一溶媒和圏の みの情報を引き出すことは困難であるが、孤立気相中の水和クラスターを対象としたレーザー分光で あれば、系の分子数を1分子レベルで制御できるため、溶質分子近傍の水和構造を直接調査できる。特 に、溶質分子に水分子が1つ結合した1水和クラスターは、溶質-溶媒分子間の相互作用を有する最 小の系として注目され、近年、1水和クラスター中における水和構造ダイナミクスの研究が重点的に 行われている。本発表では、分子内に2つの水素結合サイト(OH 基と NH 基)をもつ5-ヒドロキシ インドール(5HI 図1参照)を溶質とした1水和クラスターカチオン([5HI-(H₂O)₁]+)において観測 された水和構造組み換えについて報告する。

【手法】超音速ジェット法によって生成した 5HI 水和クラスターについて、2 波長共鳴 2 光子イオン 化((1+1') R2PI) スペクトル、光イオン化効率(PIE) スペクトル、赤外スペクトル(S₀状態: IR-dip スペクトル、D₀状態:赤外光解離(IRPD) スペクトル)を測定した。また、図 2 のように、水和構造 組み替えの生成物に由来する赤外バンド強度を計測しながら、イオン化用レーザー(v_2)を波長掃引す ることで、D₀ 状態における生成物の出現しきい値を測定した。さらに、DFT 計算(M06-2X/aug-ccpVTZ)によって、各異性体の相対安定化エネルギーの算出および基準振動解析を行った。

図1 5HI、および So 状態における 5HI-(H₂O)₁の構造

図2 生成物の出現しきい値測定のスキーム

【結果・考察】5HI-(H₂O)₁には、OH 基もしくは NH 基に水 分子が結合した 2 種類の異性体 (OH isomer および NH isomer)が存在する(図1)。図3に、各異性体のオリジンバ ンドを経由して生成したクラスターカチオンの Do状態におけ るIRPDスペクトルおよびDFT計算の結果を示す。OH isomer をイオン化した場合(図 3a)は、主に3本のバンドが観測さ れ、これらは全て[OH isomer]+由来のバンドに帰属される。一 方、NH isomer をイオン化した場合(図 3b)、理論計算との比 較から3500 cm⁻¹より高波数の領域で観測される3本のバンド は[NH isomer]+に帰属されるが、最も低波数側に観測されるバ ンドは[NH isomer]+に帰属できない。このバンドは、[OH isomer]+がもつ NH 基の自由伸縮振動(Free NH)バンドとよ く一致している。しかし、[NH isomer]+は自由な NH 基をも たない構造であるため、Free NH バンドの出現は、「NH isomer]+の一部が自由な NH 基をもつ異性体、例えば[OH isomer]+に変化していなければ説明できない。この結果は、 [NH isomer]+において水和構造の組み換えが生じていること を明確に示している。

次に、各異性体のオリジンバンドを経由して PIE スペクト ルを測定したところ、イオン信号の鋭い立ち上がりが観測され た。この鋭い立ち上がりは、各異性体の D₀ 状態における零点 振動準位への遷移に対応しており、[NH isomer]+が D₀状態で 確かに安定構造であることが分かった。また、PIE スペクトル の結果から、[NH isomer]+の断熱イオン化エネルギーを決定す ることができる。よって、図2に示すスキームに従って水和構 造組み換えの生成物の出現しきい値を決定できれば、これから 断熱イオン化エネルギーの値を差し引くことによって、[NH isomer]+から見た水和構造組み換えの活性化障壁の上限を実 験的に求めることができる。図4に生成物の出現エネルギーの 測定結果を示す。横軸は $(v_1 + v_2)$ のエネルギーから NH isomer の断熱イオン化エネルギーを差し引いた値、すなわち、[NH isomer]+の内部エネルギーに対応している。図4では、[NH isomer]+の零点準位から約 2000 cm⁻¹ほど高いエネルギー領域 から、フラグメントイオンの信号が立ち上がっている。フィッ ティングの結果から、[NH isomer]+から見た活性化障壁の上限 値は 1987 (± 30) cm⁻¹と求められた。当日は、これらの結果か ら得られたエネルギーダイアグラムと内部エネルギーとの関 係も含めて、水和構造ダイナミクスについて議論する。

図3 (a) [OH isomer]⁺、(b) [NH isomer]⁺の IRPD スペクトル。下部の棒スペクトルは DFT 計算から得られた理論スペクトルで、対 応する構造を図中に示している。

図4 水和構造組み換え反応の生成物出現し きい値測定。v₁は NH isomer のオリジンバン ド、IR 光は Free NH バンドに固定した。Free NH バンドの吸収があると、[5HI]+がフラグメ ントイオンとして生成するため、[5HI]+を検出 している。

ピコ秒時間分解赤外分光法による 5-ヒドロキシインドール

水和クラスターのイオン化誘起異性化反応ダイナミクスの実時間観測

(東工大・資源研¹, 九大院理²) 内藤あゆみ¹, 池田貴将², 宮崎充彦¹, 迫田憲治², 関谷博²,

藤井正明1

Picosecond time-resolved IR spectroscopy of 5-hydroxyindole water cluster

-Real-time observation of photoionization-induced water migration dynamics-

(Tokyo Tech¹, Kyushu Univ²) <u>Ayumi Naito</u>¹, Takamasa Ikeda², Mitsuhiko Miyazaki¹, Kenji Sakota², Hiroshi Sekiya², Masaaki Fujii¹

【序】 多くの化学反応は溶液中で起こり、溶媒和構造は分子の反応性や構造決定に大きな役割 を果たしている。特に溶質分子と直接相互作用する第一溶媒和圏にある溶媒分子の動的挙動は化 学反応の原理や溶液中の分子構造を理解する上で非常に重要である。気相分子クラスターは系の サイズや分子の配向を特定できるため、反応中心である溶質-溶媒間の溶媒和ダイナミクスを詳細 に理解するための理想的な系である。この分子クラスターを用いて分子間結合サイトを2個以上 有する系における異性化反応ダイナミクスが集中的に研究されている[1.2]。

5-ヒドロキシインドール(5HI)は OH 基と NH 基、2 つの水 (a) 5HI(NH)-W 素結合サイトを有する系である。したがってその水クラスタ ー(5HI-W)は、Fig.1 に示すように水分子が NH 基に水素結合 した NH 型異性体と、OH 基に水素結合した OH 型異性体の 2 種類の異性体が中性状態で安定に存在する。池田らは、5HI-

W クラスターを光イオン化し、イオン状態の赤外スペクトル Fig.1 水素結合サイトの違いによる 測定からイオン化が水和構造に与える影響について報告し 5HI-W の異性体 (a)NH型, (b)OH型 ている[3]。 その結果 NH型を光イオン化した場合、NH型と OH 型両方の特徴を示す振動バンド が観測されたことから、水分子が NH 基から OH 基へと移動した後に再び NH 基へ戻る、平衡反 応を含んだ異性化を指摘した[3]。 しかし構造変化の始状態と終状態を観測した彼らの報告だけ では、異性化反応を裏付ける反応速度や経路が不明のままである。そこで本研究では[5HI-W]+中 の水分子の反応経路と反応速度を明らかにするために、ピコ秒時間分解赤外分光法を用い水和構 造変化のダイナミクスを実時間で観測することを試みた。

【実験】 Fig.2 にピコ秒時間分解赤外スペクトルの 励起スキームを示す。ピコ秒紫外レーザーを用いて 5HI-W をイオン化し、そのイオン量をモニターする。 イオン化後、遅延時間をおいてピコ秒波長可変赤外レ ーザー(v_{IR})を照射し OH、NH 伸縮振動領域を波長掃 引する。赤外吸収が生じると、クラスター解離に伴い S₁ モニターしているイオン量が減少するため、赤外吸収 をイオン強度の減少として検出できる。遅延時間を変 えた測定を行うことで、光イオン化後のクラスターの Fig 構造変化を実時間で追跡することができる。

Fig.2 ピコ秒時間分解赤外分光法の励起スキーム

【結果・考察】

Fig.3 に 5HI-W の S₁-S₀ REMPI スペクトルを示 す。Fig.3の上段にナノ秒レーザーを、下段にピコ 秒レーザーを用いて測定した結果を示す。スペク トルは池田らの報告を再現しており 32487 cm⁻¹に OH 型異性体、32784 cm⁻¹に NH 型異性体の 0⁰バ ンドがそれぞれ他のバンドからはっきりと分離 して観測できた。したがって、各異性体を選択的 に励起して時間分解測定が可能であることを確 認できた。

Fig.4 に NH 型のクラスターを選択的にイオン 化した際の時間分解赤外スペクトルを示す。得ら Fig.3 ナノ秒、ピコ秒レーザーを用いて測定し れた振動バンドは、池田らの報告[3,4]を基に帰属 た 5HI-W の REMPI スペクトル した。イオン化前3psでは、3425 cm⁻¹に水素結合 したNH伸縮振動(So状態)が現れており、NH型異 性体を選択的にプローブできていることが確認 できる。イオン化後はこのバンドが消失し、3105 cm⁻¹にブロードな吸収が、3578 cm⁻¹にシャープな 吸収が現れた。これらはナノ秒実験でのイオン状 態における振動数との一致から、水素結合した NH 伸縮振動(v_{NH}^{HB})、水素結合していない OH 伸 縮振動(voHfree)に帰属できる。したがって水分子は イオン化直後もまた NH 基に結合していると言え る。イオン化後15ピコ秒まで観測したが、スペク トル形状は変化せず OH 型の振動は現れなかっ た。これは少なくともイオン化後 15 ピコ秒まで は、水分子は依然 NH 基に結合しており、異性化

反応が起きていないことを示唆する。Tanabe らが Fig.4 [5HI(NH)-W]+の時間分解赤外スペクトル 報告した、アセトアニリド・水クラスターの光イオン化に伴う水の異性化反応ダイナミクス[1]は 5 ps 以内で反応が完結しているので、池田らが報告した異性化反応は水の移動が大幅に遅くなっ ていることを意味する。講演では各バンドの時間発展の結果などを含め、イオン化に伴う異性化 反応ダイナミクスについて議論する予定である。

【参考文献】

- [1] K.Tanabe et al. Angew. Chem. Int. Ed. 51, 6604 (2012).
- [2] M.Fujii and O.Dopfer Int. Rev. Phys. Chem. 31, 131 (2012).
- [3] 池田貴将ら, 95 回日本化学会春季年会, 1H3-29 (2015).
- [4] 迫田憲治ら, 第7回分子科学討論会, 2P006 (2013).

水クラスターにおける水素結合ネットワークと水分子の振動数 (広島大院理,広島大 QuLiS)〇赤瀬大,相田美砂子

Hydrogen bonding networks and vibrational frequencies of water molecules in water clusters

(Hiroshima Univ., Center for Quantum Life Sciences) oDai Akase, Misako Aida

【緒言】水の溶媒としての重要性から、水クラスターおよび水分子を含むクラスターが盛んに研究されて いる。水分子のOH伸縮振動は赤外分光法により実測でき、その振動数は水素結合の強さを反映して変 化するため、クラスター構造の推定や水素結合の強さの尺度に利用される。水分子の水素結合の強さは、 水素結合に関与する分子だけではなく、水素結合ネットワークを介して他の水分子から影響を受ける。そ のため、水分子のOH伸縮振動の振動数とクラスターの局所的あるいは非局所的な水素結合ネットワー クとの対応についての情報は有用である。そこで、本研究では水クラスター 6 量体の様々な異性体につい て、水分子のOH伸縮振動の調和振動数とクラスターの水素結合ネットワークを解析した。

【計算方法】様々な水クラスター6量体((H₂O)₆)の異性体をMP2/aug-cc-pVDZレベルで構造最適 化した。得られた安定構造の水素結合距離(r(OH…O))および角度(θ(O-H…O))から水素結合を判定し、 水クラスターの水素結合ネットワークを決定した。ある水分子が水素ドナーとして関与している水素結合の 数と水素アクセプターとして関与している水素結合の数から、水分子の水素結合のタイプを分類し、記号 DnAnで表した。例えば、D1A2の分子は水素ドナーとして1本、水素アクセプターとして2本、合計3本 の水素結合に関与しており、水素結合していないOHを1つ有する。

安定構造に対して MP2/aug-cc-pVDZ レベルで基準振動解析を行い基準振動モードと調和振動数 を求めた。さらに、各水分子の OH の伸縮振動座標、HOH の変角振動座標および分子間振動の基準振 動座標を用いて potential energy distribution (PED)を計算した。ただし、水素結合ドナーになってい ない水分子が存在する場合は、その水分子の 2 つの OH の対称伸縮振動座標と逆対称伸縮振動座標 を伸縮振動座標の代わりに用いた。PED の値により OH の伸縮振動数領域の基準振動をそれぞれ単一 の OH の伸縮振動あるいは単一の水分子の OH 対称伸縮振動、逆対称伸縮振動に対応させた。

構造最適化および基準振動解析は Gaussian 09を用いて行った。

【結果と考察】構造最適化により152種類の水クラスター6量体の異性体の安定構造を得た。ゼロ点エネルギー補正したエネルギーを比較すると、それらの構造は相対エネルギー36kJ/molの範囲に存在し、 最安定構造から10kJ/mol以内に61種類の構造が存在する。152種類の安定構造の水素結合ネット ワークを解析すると、62種類の水素結合ネットワークに分類された。

152 種類の安定構造の 1824(=152×6×2)の OH 伸縮振動を PED に基づいて、それぞれある OH に対応させた。Figure 1 に、対応させた OH の水分子とその OH が水素ドナーとして水素結合している 水素アクセプターの水分子の水素結合のタイプにより分類した OH 伸縮振動の調和振動数を示す。すべ ての調和振動数はスケールせずにプロットしてある。MP2/aug-cc-pVDZ レベルでの水分子の対称伸縮 振動と逆対称伸縮振動の調和振動数はそれぞれ 3805、3940 cm⁻¹(Figure 1、縦の点線)である。152 種類の 6 量体の構造の OH 伸縮振動の調和振動数は 3021–3934 cm⁻¹の範囲に広く分布している。

Figure 1. Classification of harmonic frequencies of OH stretching modes in various water hexamers. Harmonic frequencies of the symmetric and asymmetric stretching modes of a water monomer are shown in vertical dashed lines.

152種類の安定構造には、D0A1、D0A2、D1A0、D1A1、D1A2、D2A0、D2A1、D2A2の8種類の タイプの水分子が存在し、この内、D0A1、D0A2、D1A0、D1A1、D1A2の5種類のタイプの水分子は 水素結合していないOHを有する。水素結合していないOHの調和振動数は3791-3934 cm⁻¹の範囲 に分布している。D0A1、D0A2の2種類のタイプの水分子は、水素ドナーとして水素結合していないの で水素結合していないOHを2つ有し、その2つの伸縮振動は対称伸縮振動と逆対称伸縮振動に対応 する。対称伸縮振動の調和振動数は3791-3804 cm⁻¹、逆対称伸縮振動の調和振動数は3923-3934 cm⁻¹の範囲に狭く分布している。D1A0、D1A1、D1A2の3種類のタイプの水分子は水素結合し ていないOHを1つもつが、その水素結合していないOHの調和振動数は水素アクセプターとなってい ないD1A0のタイプの分子では分布が狭く、水素アクセプターになっているD1A1、D1A2のタイプの分 子は分布が広い。これらの振動数はD0A1、D0A2の対称伸縮と逆対称伸縮の調和振動数の分布の間 に分布し、それぞれの振動数の分布の上端と下端の値は、D1A2 < D1A1 < D1A0の順になっている。

D1A0、D1A1、D1A2、D2A0、D2A1、D2A2の6種類のタイプの水分子は水素結合しているOHを 有し、そのOH伸縮振動の調和振動数は3021-3866 cm⁻¹の範囲に広く分布している。この分布は、そ のOHをもつ水分子の水素結合のタイプだけではなく、そのOHが水素結合している相手の水分子の水 素結合のタイプに依存していることが分かる。この相手の水分子の水素結合のタイプの違いによる調和 振動数の傾向はおおよそD1A2 < D1A1 < D2A2 < D1A2 ≈ D0A1 < D0A2 となる。この相手の水分 子の水素結合のタイプの違いでは、調和振動数の分布が重なる場合がほとんどだが、D1A2←D1A2 と

D2A1←D1A2のように分布が重ならない組も存在する。D2A1←D1A2の 水素結合のOHは最も低波数まで調和振動数が分布する。この中で、最も 低波数の振動数を示すいくつかの水素結合ネットワークの異性体は、クラス ター全体の水素結合ネットワークは異なるが、水6分子間で共通の非局所 的な水素結合ネットワーク(Figure 2)を有することが分かった。

Figure 2. A common HB network.

温度可変イオントラップに捕捉した[PhOH(H₂O)_n]⁺の光解離分光 一水和構造に対する温度効果—

(北里大院理1・北里大理2)〇八木 令於名1・笠原 康利2・石川 春樹2

 $\label{eq:photodissociation spectroscopy of $$ [PhOH(H_2O)_n]^+$ trapped in the $$ temperature-variable ion trap$ $$$

-Temperature effects on the hydration structures-

(Kitasato Univ.) oReona Yagi, Yasutoshi Kasahara, Haruki Ishikawa

【序】微視的水和の微視的モデルとして気相分子クラスターを用いた分光研究が行われてきた。現在では赤外分光の発展により水和構造の決定が可能となり、研究は微視的水和構造に対する温度効果の解明へと進んできている。気相分子クラスターは低温では最安定構造のみ存在するが、温度上昇に伴い、異性化が生じ、様々な水和構造を持つ異性体が存在するようになる。この気相分子クラスターの異性化はバルクにおける構造揺らぎと対応付けられる。したがって、微視的水和構造に対する温度効果を調べることでバルクにおける水素結合ネットワークに対する温度効果を調べるために、分光学的情報が既知であるフェノール-水クラスターカチオン([PhOH(H₂O)_n]⁺)[1]を対象とし、温度可変イオントラップ分光装置を用いて温度制御した[PhOH(H₂O)_n]⁺の紫外光解離スペクトルの測定を行っている。本講演では振電バンドの温度による形状変化から、微視的水和構造に対する温度効果について議論する。

【実験】本実験で用いた温度可変イオントラップ分光装置[2,3]を Fig. 1 に示した。対象とする[PhOH(H₂O)_n]⁺は PhOH と He、H₂O の混合蒸気を真空中にパルスノズルから噴出し、ノズル 直下で光イオン化した PhOH⁺と H₂O との多重衝突により生成する。生じた [PhOH(H₂O)_n]⁺を初段の四重極質量選別器(QMS1)にて目的のサイズのみを選別した後、温度

可変 22 極イオントラップへ導入す る。イオントラップ内でクラスターイ オンは電場により捕捉され、温度制御 された He バッファーガスとの多重 衝突によって温度制御される。温度制 御範囲はおよそ 30~300 K である。 温度制御の後、紫外光をクラスターに 照射して光解離させ、生じたフラグメ ントイオンを二段目の質量分析器 (QMS2)で選別・検出する。フラグメ ントイオンをモニターしながら波長 を掃引することで吸収スペクトルに 相当する光解離スペクトルが得られる。

1A09

Fig. 1. 実験装置図

【結果と考察】過去の報告[1]より、 $[PhOH(H_2O)_n]^+$ は n ≥ 4 でフェノールの OH 基のHが水側へプロトン移動を生じ、フェノ キシラジカルの振電バンドが観測されること が知られている。我々はこの振電バンドが観 測されるおよそ 26200-26700 cm⁻¹の領域で 測定を行うこととした。温度制御条件下にお ける[PhOH(H₂O)_n]⁺の紫外光解離スペクトル を測定するために、まず、22 極イオントラッ プ中でイオンが熱平衡状態に至るまでに必要 なトラップ時間の確認を行った。トラップ温 度を 30 K に固定し、トラップ時間を変化させ た n = 6 の紫外光解離スペクトルと、比較の ためにトラップ・温度制御なしの条件で測定 した n = 6 の紫外光解離スペクトルを Fig. 2 に示した。まず、30 ms と 40 ms トラップで スペクトルの形状が同じことから、n = 6 は 30 ms トラップで十分冷却されると判断し た。また、「温度制御なし・n=0検出」→「温 度制御なし・n=1 検出」→「1 ms トラップ」 → $\lceil 20 \text{ ms} \rangle$ トラップ」 → $\lceil 30 \text{ ms} \rangle$ トラップ」 の順に 26500-26560 cm⁻¹ 付近の信号が減少 し、続いて 26465 cm⁻¹付近の信号が減少、そ

して、26415 cm⁻¹のバンドがシャープになるという変化が見られた。n = 0 に解離したクラ スターは n = 1 に解離したクラスターよりも内部エネルギーが高く、大きな余剰エネルギー により n=0 まで解離したと考えられる。よって、n=0 検出で現れている 26500-26560 cm⁻¹ のバンドはよりエネルギーの高い異性体に由来するものと結論した。また、トラップ時間が 長くなるにつれて、26230 cm⁻¹付近の吸収が減少し、26330 cm⁻¹付近にシャープなバンドが 出現した。このことから、前者はエネルギーの高い異性体由来の、後者はエネルギーの低い 異性体由来の信号と考えられる。つまり、Fig. 2 は n=6 の冷却過程における異性体の分布の 変化、すなわち、異性化を示したものである。この結果は、[PhOH(H₂O),]⁺の紫外光解離スペ クトルが温度により変化し、温度による異性体の分布の変化と水和構造に対する温度効果に ついて得られたスペクトルから議論できるという有望なデータである。現在、トラップ時間 を 30 ms に固定し、トラップ温度を変化させた条件で[PhOH(H₂O),]⁺の紫外光解離スペクト ルの測定を行っており、講演ではその経過について報告する。

[1] S. Sato and N. Mikami, J. Phys. Chem. 100, 4765 (1996).

[2] A. Fujihara, N. Noguchi, Y. Yamada, H. Ishikawa, and K. Fuke, J. Phys. Chem. A 113, 8169 (2009).

[3] H. Ishikawa, T. Nakano, T. Eguchi, T. Shibukawa, and K. Fuke, Chem. Phys. Lett. 514, 234 (2011).