4P082

非イオン性界面活性剤 C₁₂E_mの添加による DMPC 脂質二重層膜の物性変化 (名大院工*,名大院工計算科学連携教育研究センター**) Mohamed Syafawani*,〇安藤嘉倫**,岡崎進*

Changes in physical property of DMPC bilayers by addition of non-ionic surfactant $C_{12}E_m$

(Nagoya Univ.*, Nagoya Univ. CCS**) Syafawani Mohamed*,⊖Yoshimichi Andoh**, Susumu Okazaki*

【序】リン脂質からなる脂質二重層膜に他の脂質を添加した際に, 脂質二重層膜の物性が変化することが知られている。例えば液晶相にあるリン脂質二重層膜にコレステロールを添加した場合、 膜構造が秩序化し膜流動性が低下する。このコレステロールの効果により動物細胞の細胞膜は生 命活動に必要な固さを保っている。一方、非イオン性界面活性剤の一種であるオクタエチレング リコールモノドデシルエーテル ($C_{12}E_8$)をジミリストイルホスファチヂルコリン (DMPC)脂質 二重層膜に 33.3 mol% 添加した場合に膜の秩序度が低下し膜が柔らかくなるとの報告が²H-NMR 実験によりなされている[1]。当グループでは、過去分子動力学 (MD)計算により $C_{12}E_{10}$ をジミリ ストイルホスファチヂルコリン DMPC 脂質二重層膜に 9.4 mol% 添加した場合に、実験と同様膜 の秩序度が低下し膜が側方向に柔らかくなること、およびその分子メカニズムを明らかにしてき た[2]。本研究の目的は、添加する界面活性剤 $C_{12}E_m$ の頭部長さを変化させた際に DMPC 脂質二重 層膜に生じる物性の変化を MD 計算により系統的に明らかにすることにある。

【計算方法】単層当たり 64 個の DMPC 分子からなる脂質二重層膜を用意し, そのうち 21 個 (33 mol%) を $C_{12}E_m$ と入れ換えた (m = 1, 2, 4, 8, 10)。二重層膜の上下に水和に十分な水分子 5120 個を 配置し分子動力学計算の基本セルとした。DMPC 純膜を含め 6 通りの系を用意し, 初期配置を m = 1, 8 について 2 通りそれ以外は 1 通り作成した。脂質力場には全原子モデルの CHARMM36, PEG には CHARMM35, および水分子には TIP3P を用いた。LJ 相互作用は 12Å でカットオフ (8~12Å に force switching 関数を適用)し, 静電相互作用は PME 法により計算した。水素を含む化学結合に 距離拘束条件を導入した上で時間刻み幅 $\Delta t = 1$ fs にとり, NPT アンサンブルのもと 150 ns の MD 計算を行った (P = 1 atm, T = 303.15 K)。MD 計算はソフトウェア MODYLAS[3]により行った。

【結果と考察】 表 1 に平衡状態での脂質二重層膜面積 *S*, 脂質膜厚 *h*_l, および *S* のゆらぎから計 算した側方向の等温面積圧縮率 χ_T をのせた。先行研究[2]と同様 $C_{12}E_{10}$ を添加した DMPC/ $C_{12}E_{10}$ 二成分膜は DMPC 純膜にくらべ大きな *S* および χ_T となった。これらは同二成分膜が純膜にくら べ側方向に広がったより柔らかい膜になることを示し、ランダムコイル状に広がった E_{10} 頭部の 一部が DMPC 膜の疎水部にめり込む形で存在しているためである[2]。一方 E_m 頭部が小さくなる ほど純膜に比べ *S* は減少した。これは PEG 重合度 *m* が小さくなるほど頭部が直鎖状に近づきより

	DMPC	DMPC/C ₁₂ E ₁	DMPC/C ₁₂ E ₂	DMPC/C ₁₂ E ₄	DMPC/C ₁₂ E ₈	DMPC/C ₁₂ E ₁₀
S / ${ m \AA}^2$	3977	3118±1	3315	3593	4008 ± 55	4075
h_l / Å	35.3	38.5±1.5	35.8	34.5	32.3±0.4	32.8
$\chi_{ m T}$ / $m^2 J^{-1}$	5.1	5.3 ± 0.9	5.2	6.3	11±5	15

表1 平衡状態での平均値 (50~150 ns の 100 ns 平均).

表中の誤差は異なる初期配置より始めた2通りの MD 計算についての平均値と最大値最小値との差.

小さな分子断面積となるためである。 X_T については m の減少とともに徐々に純膜に漸近する傾向 が見られた。mの増加に伴う h_lの減少は後述するように膜の疎水部の構造が乱れ疎水部厚さが減 少したためである。

図1は膜疎水部の秩序度を測るための尾部 C-H ベクトルのオーダーパラメーター S_{CH} を計算し た結果である。先行研究[2]と同様 DMPC/ $C_{12}E_{10}$ 二成分膜における S_{CH} は純膜にくらベ小さくなり, E_m 頭部が小さくなるほどこの傾向は弱まった。その一方 DMPC/ $C_{12}E_1$ 二成分膜については S_{CH} が 純膜にくらべ大きくなるという興味深い結果が得られた。その分子メカニズムは脂質分子重心ど うしの側方向二次元動径分布関数 $g_{2D}(r)$ (図 2) から説明される。図中 DMPC- $C_{12}E_m$ 間の $g_{2D}(r)$ は, mが大きい場合にはピークを示さず緩やかに 1 へ漸近する。対して m が小さい場合には、第一ピー クが現れかつ m が小さくなるほどピーク位置が小さな r 方向ヘシフトしている。特に $C_{12}E_1$ につ いては DMPC-DMPC 間のピークよりも 2 Å 程度内側に DMPC- $C_{12}E_1$ 間のピークが現れている。こ のことから、頭部の小さい $C_{12}E_1$ は DMPC-DMPC 分子間の隙間に入り込むような形で脂質二重層 膜中に存在し、DMPC 分子のアシル鎖の運動を阻害するために、 S_{CH} の値が順膜に比べ小さくなっ たと考えられる。以上、先行研究[2]とあわせ $C_{12}E_m$ を DMPC 脂質二重層膜に添加した場合の物性 変化およびその分子論を明らかにした。

図 1 DMPC *sn*-1 尾部の C-H オーダーパラメーター。 図中の誤差棒は 2 通りの MD 計算についての平均 値と最大値最小値との差。

図2 脂質分子重心間の二次元動径分布関数。 図中の誤差棒の定義は図1におなじ。

参考文献 [1] D. Otten, M. F. Brown, K. Beyer, J. Phys. Chem. B, 104, 12119 (2000). [2] Y. Andoh, S. Muraoka, S. Okazaki, Mol. Siml., 41, 955-960 (2015). [3] Y. Andoh, N. Yoshii et al., J. Chem. Theory Comput., 9, 3201 (2013). [www.modylas.org よりダウンロード可]