4P008

トランス-2-ヘキセナールのフーリエ変換マイクロ波スペクトル (神奈川工大*・総研大**)○横山良輔*・川嶋良章*・廣田榮治** Fourier transform microwave spectrum of *trans*-2-hexenal

(Kanagawa Inst. Tech.* and The Graduate Univ. Advanced Studies**)

Ryosuke Yokoyama*, Yoshiyuki Kawashima*, and Eizi Hirota**

【序】芝生の匂いの原因物質の一つである cis-3-ヘキセナ ールを取り上げた。市販されている cis-3-ヘキセナールを 50℃に加熱、FTMW 分光計を用いて回転スペクトルを測定 し、強い吸収線を得た。スペクトルから求めた回転定数の 値は、trans-2-ヘキセナール(t-2-hexenal)の計算値に近い。 cis-3-ヘキセナールは容易に trans-2-ヘキセナールに異性化 することが知られている。今回、市販の trans-2-ヘキセナ ールを用い FTMW 分光計により 3 種の回転異性体の回転 スペクトルを観測・帰属したので報告する。

Fig.1 Molecular structure of the skew-*t* form of t2-hexenal

【実験】市販の*t*-2-hexenal をステンレス製の容器に入れ、

背圧 2.0 atm のアルゴンで希釈、噴射ノズルから真空チャンバー内に導入して試料の分子線を 生成した。容器を約 50℃に保ちながら測定した。測定周波数領域は 4~24GHz、精密測定には 積算回数を 100~1000 とした。

【計算】Gaussian09を用いて ab initio 分子軌道計算を MP2/6-311++G(d,p)、B3LYP/6-311++G(d,p)、 cam-B3LYP/6-311++G(d,p)レベルで行った。*trans*-2-hexenal の安定構造は、2 面角 C3=C4-C5C6 について *cis*(*c*)型と *skew*(*s*)型、2 面角 C4C5-C6C7 について *trans*(*t*)型と *gauche*(*g*)および(*g*')型 の組み合わせ、合計 5 種類あることが分かった。Skew-trans 型を図1に示す。MP2、DFT に より計算した回転定数はお互いによく一致していたが、エネルギーには大きな差があった。 計算結果を表1に示す。5 個の回転異性体について計算した分子内振動の振動数はすべて正 であった。

【結果】量子化学計算から期待される a 型遷移 $J = 5 \leftarrow 4$ の周波数領域 8.0~ 8.3GHz を掃引し、 強い吸収線を観測した。さらに 9.7GHz 近辺に $J = 6 \leftarrow 5$ を、6.45GHz に $J = 4 \leftarrow 3$ を見出し、帰 属した。これらのデータから得た実効回転定数 B+C の値は 1614MHz (set1 と名付ける)であ る。他の回転異性体に期待される周波数領域を掃引し、2 組の a 型遷移を測定・帰属した。 実効回転定数はそれぞれ、2019MHz (set2)、1800MHz (set3)である。Set1 の b 型、c 型遷移は 観測できなったが、set2、set3 は b 型 R 枝遷移を 6 本測定・帰属した。回転スペクトルの解析 には、非対称コマ回転スペクトルに対する Watson の *S*-reduced Hamiltonian を用いた。set1 で は $J = 3 \leftarrow 2 \sim 11 \leftarrow 10$ 、 $K \leq 10$ の a 型 R 遷移 113 本を用いて最小二乗法により回転定数と 5 個の 遠心力歪定数 D_J 、 D_{JK} 、 d_I 、 H_{JK} と H_{KJ} を決定した。同様に、set2 と set3 に対しても解析を行 った。スペクトルの強い回転異性体(set1 と set2)の ¹³C 種の測定・帰属を行っている。 【考察】スペクトル解析結果と量子化学計算を比較すると、set1 を *s*-*t*、set2 を *s*-*g*、set3 を *c-t*に帰属できる。cam-B3LYP で計算された エネルギーが測定スペクトル強度とよく対 応している。5 個の回転異性体周辺の PES を 図 2 に示す。回転異性体間の山は 400~1100 cm⁻¹である。

検出された3個の回転異性体のa 型 R 遷移 のうち $K_a = 2,3,4$ のK 型 2 重項線の間には1ないし2本の付加的な吸収線が検出された。 このスペクトル分裂は末端メチル基の内部 回転によるもので、メチル基内部回転の方向 がa軸に近いset1とset3では分裂が明確に測 定された。プログラム XIAM を用い、メチル

基の回転定数 F を 159.21GHz、メチル基の方向余弦を

cam-B3LYP による計算値に固定して最小二乗法解析した。分裂の観測例が少ない set2 では V_3 の誤差が大きい。結果を表 2 に示す。メチル基の内部回転障壁 V_3 値は、cam-B3LYP によって計算すると s-t、s-g'、c-t に対し 1018、992、1012cm⁻¹となり、回転定数の場合と同様、よく一致している。

Table 1. Rotational constants, dipole moment, and energy difference from the most stable isomer of *t*-2-hexenal, calculated by ab initio MO methods, MP2/6-311++(d,p), B3LYP/6-311++(d,p), and cam-B3LYP/6-311++(d,p).

Rotational	skew-trans	skew-gauche	skew-gauche'	cis-trans	cis-gauche
conformer	(s-t) = (s'-t)	(s-g) = (s'-g')	(s-g') = (s'-g)	(c-t)	(c-g) = (c-g')
A /MHz	14010.0	8293.1	6804.8	9313.4	5596.4
<i>B</i> /MHz	809.2	949.8	1035.6	936.6	1181.1
C/MHz	804.7	898.0	959.3	864.5	1039.5
μ_a/D	4.23	4.32	4.12	3.83	3.75
μ_b /D	0.78	0.02	1.26	2.09	2.19
μ_c /D	1.06	0.77	0.89	0.00	0.55
MP2 /cm ⁻¹	84.9	229.7	0.0	274.1	451.7
B3LYP/cm ⁻¹	0.0	300.0	136.3	152.2	537.5
cam-B3LYP/cm ⁻¹	0.0	276.3	104.6	80.9	439.5

Table 2. Observed molecular constants of three rotational isomers of the *t*-2-hexenal

	Set 1 (<i>s</i> - <i>t</i>)	Set 2 (s-g')	Set 3 $(c-t)$
A / MHz	13805 (45)	6628.17061 (64)	9173.15264 (68)
<i>B</i> / MHz	808.671848 (72)	1049.653776 (64)	936.696450 (69)
C / MHz	805.383571 (72)	968.620638 (62)	863.705276 (66)
D_J / kHz	0.090242 (85)	0.38229 (11)	0.07045 (11)
D_{JK} / kHz	-11.66076 (59)	-4.97629 (69)	-2.7625 (16)
V_3 / cm^{-1}	1009.2 (30)	1023 (33)	1026.7 (16)
$\lambda_a/$ -	(0.9202367)	(0.047356)	(-0.999906)
$\lambda_b/$ -	(0.3912981)	(-0.976306)	(0.00136)
$N_{(a-type)}$ / -	113	118	101
$N_{(b-\text{type})}$ / -	0	6	6
σ / kHz	1.3	1.6	1.9