スピン選択的化学反応と量子計測の実験的検証

(埼玉大院・理工¹, オックスフォード大学, 物理理論化学研究所², アリゾナ州立大学³) 〇前田 公憲¹, 須田 綾香^{1*}, ホーア ピーター², ガスト デバンス³, リデル ポール³

Experimental test of the quantum measurements in spin-selective chemical reactions of radical pairs.

(Saitama University¹, University of Oxford², Arizona state University³) Kiminori Maeda¹, Ayaka Suda^{1*}, Peter Hore², Devens Gust³, Paul Liddel³ *Present affiliation: Nara Institute of Science and Technology(NAIST).

【序論】 ラジカル対とは2つの電子スピンが離れて存在している状態の事である.例 えば化学コンパスのモデル分子としての研究に用いられている

Carotenoid-Porphyrin-Fullerene (CPF) 三元 系では、逆電子移動反応が図1に示すよう に、スピン状態選択的に Singlet より起こる. スピン選択的化学反応速度定数を k_s^{eff} と おいてラジカルの密度行列を $\rho = \begin{pmatrix} \rho_{SS} & \rho_{ST} \\ \rho_{TS} & \rho_{TT} \end{pmatrix}$ とすると、Singlet の状態密度 ρ_{SS} は $\frac{\partial \rho_{SS}}{\partial t} = -k_s^{eff} \rho_{SS}$ と書ける、一方で非対角

項 ρ_{ST} , ρ_{TS} の挙動ついては,化学反応における 量子観測の有無の議論から3つのモデルが存 在する.

1)Haberkorn(従来型)モデル [1]:

 $\frac{\partial \rho_{ST}}{\partial t} = -\frac{k_S^{eff}}{2} \rho_{ST},$

2)Kominis (量子ゼノ効果モデル) [2] 3)Jones-Hore(量子観測)モデル[3-4]:

$$\frac{\partial \rho_{ST}}{\partial t} = -k_S^{eff} \rho_{ST}$$

Product states

図 1 ラジカル対の反応経路図

(2),(3)のモデルは、スピン選択的な化学反応が起こる際に、システムがラジカル対 のスピン状態を認識する際に、スピン状態の選択が量子状態ケット(波動関数)の観 測した状態への収縮を起こすであろうという考えに基づく.しかし、(2)のモデルは全 く現実的で無く、発表者らが示したその後の実験から明らかである[5].一方で、(3) は(1)と大きな違いがなく、反応に伴う電子スピンの位相緩和が2倍となる。さらに、 (3)は(1)は two site model における2つの極限であることが示された[4].その後 CPF 三元系のパルス EPR 実験において、(1),(3)の中間となる事を示し、(3)は必要条件 ではない事を明らかにした[6]が、現実的な数値を用いた理論計算による議論はされて こなかった。そこで本研究では具体的 な数値を用いた計算によって Haberkorn モデル(1)と Jones モデル (3)との関係を考察する.

【結果と考察】Two site model を Marcus 理論にあてはめて化学反応を 考えた. 横軸を溶媒の配向としてエネ ルギーを模式的に描くと図 2 の様にな る. 本系は逆転領域となることが知ら れており,活性化状態(RP1)で反応 が起こる為には adiabatic と nonadiabatic な遷移の両方が必要である. 以上の事を踏まえると,パラメータの 条件が決定する.

1)実験値
$$k_s^{eff} \cong k_{21} \left(1 - \frac{k_{12}}{k_s + k_{12}} \right)$$

= 1 × 10⁷ s⁻¹
2) k_s^{eff} の温度依存のアレニウスプロ

ットカュら、 $\frac{k_{21}}{k_{12}} \cong \frac{[RP1]}{[RP2]} = e^{-\frac{E_a}{kT}} = 0.01$

3) Landau-Zener 理論を用いた考察 [7]から RP1 での反応確率は 50 %を 超えないので $k_S \le k_{12}$ となる.

これらの条件下で two site model (図 3) を解いて得られた Singlet の確率

図3 Two site model と Single site model とを 比較して effective dephasing (α) を求める.

図4 Singlet 確率密度の時間発展の計算結果 $k_s^{eff} = 1 \times 10^7, k_{12} = k_S = 2 \times 10^9,$ T = 230 K, $k_{21} = 2 \times 10^7$,

密度の計算結果を図4に示す.この結果によると $k_{12} = k_s = 2 \times 10^9 s^{-1}$ の時最もJones モデルに近くなるが,量子計測の寄与はSingle site modelの計算結果と比較して, 30 %(α =0.3)を超えないと結論された. さらに先述の条件は実験の温度領域での溶媒 の回転としては小さすぎるため,この効果は考えにくく,リーズナブルな値 ($k_{12} \simeq 10^{11}$)を用いると,量子計測の寄与はほぼ完全に無くなり,Haberkorn のみと なり,実験結果[6]を支持する.

References :

[1] R. Haberkorn, Mol. Phys., 32(1976)1491.

[2] I. K. Kominis, Phys. Rev. E, 80(2009)056115.

[3] J. A. Jones, P. J. Hore, Chem. Phys. Lett., 488(2010)90.

[4] J. A. Jones, K. Maeda, P. J. Hore, Chem. Phys. Lett., 507(2011)269.

[5] K. Maeda, C. J. Wedge, J. G. Storey, K. B. Henbest, P. A. Liddel, G. Kodis, D. Gust, P. J. Hore, C. R. Timmel, *Chem. Comm.* **47**(2011)6563.

[6] K. Maeda, P. Liddel, D. Gust, P. J. Hore, J. Chem. Phys., 139(2013)234309.

[7] Y. Georgieviskii, A. I. Burshtein, B. M. Chernobrod, J. Chem. Phys., 105(1996)3108.