4A06

ハロアルカンの炭素–ハロゲン結合への金原子負イオンの挿入 (東大院理¹, 京大ESICB²)○村松悟¹, 小安喜一郎^{1,2}, 佃達哉^{1,2}

Insertion of atomic gold anion into carbon-halogen bond of haloalkanes

(The Univ. of Tokyo¹, ESICB, Kyoto Univ.²) O Satoru Muramatsu¹, Kiichirou Koyasu^{1,2}, Tatsuya Tsukuda^{1,2}

【序論】近年,金ナノ粒子・クラスターが,Ullmann反応などの炭素-炭素結合形成反応に対して触媒活性を示すことが明らかになってきた[1]。銅などの均一系触媒によるUllmann反応は ハロゲン化アリールへの酸化的付加により開始することが知られており,金クラスターの場 合にもハロゲン化アリールの解離吸着を契機とする反応機構が理論計算により提案されてい る。金クラスターによるC-X結合の活性化機構の解明に向けた第一歩として,最も単純な系 である金原子負イオン(Au⁻)とハロアルカンとの反応を質量分析・光電子分光および密度汎関 数法(DFT)計算により調べたところ,新しい活性化経路を見出した。

【実験・計算方法】質量分析・光電子分光[2] まず、5-10気圧のヘリウムガス中で、金ディスクに対してNd:YAGレーザーの第2高調波(532 nm)を集光してAu⁻を生成した。次に、生成したAu⁻を反応セルに導入し、ハロアルカン(CH₃IおよびC(CH₃)₃I)蒸気と反応させた。負イオン反応生成物を飛行時間型質量分析計によって検出した。さらに、質量選別した生成物に対してNd:YAGレーザーの第3または第4高調波(355,266 nm)を照射し、磁気ボトル型光電子分光計を用いて光電子スペクトルを得た。

DFT計算 得られた生成物の構造および生成過程の反応経路をDFTに基づいて計算した。汎 関数としてB3LYPを,基底関数としてLanL2DZ (Au, I),および6-31+G(d,p) (C, H)を用いた。 様々な初期構造から構造最適化の結果得られた構造に対して,振動数解析によって安定構造 であることを確認した。各安定構造に対して垂直電子脱離エネルギー(VDE; vertical detachment energy)を計算した。また,遷移状態(TS)への構造最適化および固有反応座標(IRC) 計算により,反応物(Au⁻とハロアルカン)から生成物に至る反応経路を求めた。計算には Gaussian 09およびGRRM (Global Reaction Route Mapping)パッケージ[3]を用いた。

【結果・考察】Au⁻とCH₃Iを反応させて得られた質量スペクトルを図1に示す。反応によって Au⁻のピークが消失し,Au⁻,Au⁻などとともに,反応物の付加体に相当するAuCH₃I⁻が検出 された。付加体AuCH₃I⁻の光電子スペクトルを測定したところ,3本のピーク(A – C)が検出さ

れた(図2)。ピークA, Bの電子束縛エネルギーをそ れぞれ2.45, 3.96 eVと求めた。一方, Cについては 低速の光電子の検出感度が低いため, 定量的な解析 を行わなかった。図3にAuCH₃I-の3種類の安定構造 (1-3)と相対的なエネルギーを示す。構造1ではAu⁻ がCH₃IのIとの間に結合を形成しているのに対し, 構造2はΓとCH₃Auからなるイオン-分子錯体とみな すことができる。最安定構造3は, AuがCH₃IのC-I 結合に挿入した構造をもつ。また, 反応経路探索の

図 1. Au と CH₃Iの反応前後の質量スペクトル。

結果,反応物からそれぞれの安定構造への反応経路 は,以下のように説明できることがわかった。構造 1および2は,それぞれAu⁻がCH₃IのI側およびC側か ら近づくことで形成される。特に2の形成過程では, AuからCH₃Iへの電荷移動と結合の組み替えが協奏 的に進行することから,S_N2型の求核置換反応であ るとみなすことができる。構造2からはさらに,「 とCH₃Auへの解離経路よりもエネルギー的に低い 遷移状態を経由してI⁻がAu側に回り込み,構造3を

形成する経路が見出された。1-3のVDEの計算値(VDE_{cale})を図3 に併せて示す。光電子スペクト ルの主要ピークBは最安定構造3 に帰属される。ピークAは1また は飛行中に単分子解離により生 成したAul-に帰属される。

Au⁻がハロアルカンに対する S_N2反応を経てC-X結合に挿入さ れる機構を検証するために, C(CH₃)₃Iを用いて反応に対する 立体効果を調べた。図4に, AuC(CH₃)₃I⁻の光電子スペクトル を示す。2.77, 3.83 eVの電子束縛

エネルギーをもつ2本のピーク(D, B')が観測された。 ピークB'は、安定性およびVDE値より、C(CH₃)₃Iの C-I 結合にAuが挿入した構造に帰属できる。一方、 ピークDはS_N2反応の初期段階に生成するAu⁻と C(CH₃)₃Iのイオン-分子錯体に帰属した。このイオ ン分子錯体の生成は、S_N2反応経路において立体的 な要因による活性化障壁が生じることを表してお り、計算結果と矛盾しない。以上のように、本研究 によってAu⁻がS_N2反応を経てハロアルカンのC-X 結合を切断し、最終的にC-X結合に挿入されること が明らかになった。

Electron binding energy (eV) 図 2. AuCH₃「の光電子スペクトル。表には A, B の電子束縛エネルギー値および帰属を示した。

図 3. AuCH₃「の最適化構造および生成物から至る反応経路。黄: Au, 紫: I,黒:C,白:Hを表す。結合距離はÅで表しており、括弧中には NBO 電荷を示した。点線は IRC を表し、一部経路中の適当な構造を参考のた めに記した。表には各安定構造に対する VDE の計算値を示した。

図 4. AuC(CH₃)₃I⁻の光電子スペクトル。各ピーク の帰属にあたる構造と VDE の計算値を併せて示 した。

【参考文献】[1] Li, G. et al. Nanotechnol. Rev. 2012, 2, 529. [2] Watanabe, T.; Tsukuda, T. J. Phys. Chem. C 2013, 117, 6664. [3] Ohno, K.; Maeda, S. Chem. Phys. Lett. 2004, 384, 277.

【謝辞】東北大学の大野公一名誉教授には、GRRMパッケージをご提供頂き、その利用に関 して貴重なご助言を多く頂きました。ここに感謝の意を表します。