3 P114

三次の展開項を用いた時間依存密度汎関数強束縛法（TD－DFTB3）
 （京大•福井センター）西本佳央

Time－Dependent Density－Functional Tight－Binding Method with the Third－ Order Expansion of Electron Density（TD－DFTB3）

（Fukui Institute for Fundamental Chemistry，Kyoto University）Yoshio Nishimoto

Prediction of photochemical properties has been increasingly common due to the advancement of time－dependent density functional theory（TD－DFT）．Even with advancement in TD－DFT，the computational demanding is still a heavy burden for researchers who wish to investigate large systems．An alternative method is the density－functional tight－binding（DFTB） method．Here，we develop a formalism for the calculation of excitation energies and excited state gradients for the self－consistent－charge DFTB with the third－order contributions of a Taylor series of DFT energy with respect to the fluctuation of electron density，called TD－ DFTB3．${ }^{1}$

In computing excitation energies，the following non－Hermitian eigenvalue problem has to be solved，${ }^{2,3}$

$$
\left(\begin{array}{ll}
\mathbf{A} & \mathbf{B} \\
\mathbf{B} & \mathbf{A}
\end{array}\right)\binom{\mathbf{X}}{\mathbf{Y}}=\omega\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{\mathbf{X}}{\mathbf{Y}}
$$

where ω is the excitation energy and matrix elements of \mathbf{A} and \mathbf{B} are defined as

$$
A_{i a \sigma, j b \tau}=\delta_{\sigma \tau} \delta_{a b} \delta_{i j}\left(\varepsilon_{a \sigma}-\varepsilon_{i \sigma}\right)+K_{i a \sigma, j b \tau}
$$

and

$$
B_{i a \sigma, j b \tau}=K_{i a \sigma, b j \tau} .
$$

where $\varepsilon_{i \sigma}$ is the eigenvalue of i－th molecular orbital，and the element of the coupling matrix $K_{i a \sigma, j b \tau}$ is given as the second－order derivative of the total energy with respect to density matrix elements．For singlet－singlet excitation，the coupling matrix can be written as

$$
\begin{aligned}
& K_{i a \sigma, b j \tau}=\frac{1}{4} S_{\mu \nu} S_{\kappa \lambda}\left(\gamma_{A C}+\gamma_{B C}+\gamma_{A D}+\gamma_{B D}\right)+\frac{1}{6} S_{\mu \nu} S_{\kappa \lambda}\left[\left(\Gamma_{A C}+\Gamma_{A D}\right) \Delta q_{A}+\left(\Gamma_{B C}+\Gamma_{B D}\right) \Delta q_{B}\right. \\
&+\left(\Gamma_{C A}+\Gamma_{C B}\right) \Delta q_{C}+\left(\Gamma_{D A}+\Gamma_{D B}\right) \Delta q_{D} \\
&\left.+\sum_{E}\left\{\Gamma_{A E}\left(\delta_{A C}+\delta_{A D}\right)+\Gamma_{B E}\left(\delta_{B D}+\delta_{B D}\right)\right\} \Delta q_{E}\right] .
\end{aligned}
$$

Note that only the first term is necessary in the previous TD－DFTB2．${ }^{3}$
Nuclear gradients can be obtained by solving Z－vector equations following the standard

TD-DFT approach. ${ }^{4}$ The third-order derivative of the total energy with respect to density matrix elements, defined as

$$
\hat{g}_{\mu v \sigma, \kappa \lambda \tau, \phi \chi v}=\frac{1}{12} S_{\mu \nu} S_{\kappa \lambda} S_{\phi \chi} \sum_{E}\left\{\Gamma_{A E}\left(\delta_{A C}+\delta_{A D}\right)+\Gamma_{B E}\left(\delta_{B C}+\delta_{B D}\right)\right\}\left(\delta_{\phi \in E}+\delta_{\chi \in E}\right),
$$

is necessary in TD-DFTB3, and it is missing in the previous formulation for TD-DFTB2. ${ }^{5}$ A general equation for excitation energy gradient is finally given as

$$
\frac{\partial \omega}{\partial R_{\alpha x}}=\sum_{\mu \nu \sigma} \frac{\partial H_{\mu v}^{0}}{\partial R_{\alpha x}} P_{\mu \nu \sigma}-\sum_{\mu \nu \sigma} \frac{\partial S_{\mu v}}{\partial R_{\alpha x}} W_{\mu \nu \sigma}+\frac{1}{2} \sum_{\mu \nu \sigma \kappa \lambda \tau} \frac{\partial K_{\mu \nu \sigma, \kappa \lambda \tau}}{\partial R_{\alpha x}} \widehat{\Gamma}_{\mu \nu \sigma, \kappa \lambda \tau}
$$

where $P_{\mu \nu \sigma}, W_{\mu \nu \sigma}$, and $\hat{\Gamma}_{\mu \nu \sigma, \kappa \lambda \tau}$ are obtained as a solution of Z-vector equations. The presented method has been implemented in GAMESS-US, and the implementation may be available in a future release.

Because of the limit in length, only the computational efficiency is highlighted here. For demonstration, trans-polyacetylene $\left(\mathrm{C}_{400} \mathrm{H}_{402}\right)$ which contained 2,002 basis functions had been chosen. Five lowest excitation energies were calculated, and the first excitation vectors were used in the gradient calculation. With TD-DFTB3, ground state SCF took 213.82 s , and the computation of excitation energies and gradient took 819.92 and 45.54 s with one CPU of Xeon E5-1620 v3 (3.50 GHz). The additional computational cost for TD-DFTB3 compared to TDDFTB2 is virtually negligible. These timings are probably one or two orders of magnitude faster than those of TD-DFT. It is therefore possible to apply TD-DFTB for medium-size molecules routinely. In the poster, calculated absorption and fluorescence energies of cresyl violet in explicit water molecules (~ 400 atoms) will be briefly discussed as well as the comparison of the performance of TD-DFTB2 and TD-DFTB3.

References

[1] Y. Nishimoto, submitted. [2] M. E. Casida, "Time-Dependent Density Functional Response Theory for Molecules," in Recent Advances in Density Functional Methods, edited by D. P. Chong (World Scientific, Singapore, 1995) Chap. 5, pp. 155-192. [3] T. A. Niehaus, S. Suhai, F. Della Sala, P. Lugli, M. Elstner, G. Seifert, and T. Frauenheim, Phys. Rev. B 63, 085108 (2001). [4] F. Furche, and R. Ahlrichs, J. Chem. Phys. 117, 7433 (2002). [5] D. Heringer, T. A. Niehaus, M. Wanko, and T. Frauenheim, J. Comput. Chem. 28, 2589 (2007).

