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Time-Dependent Density-Functional Tight-Binding Method with the Third-

Order Expansion of Electron Density (TD-DFTB3)
(Fukui Institute for Fundamental Chemistry, Kyoto University) Yoshio Nishimoto

Prediction of photochemical properties has been increasingly common due to the
advancement of time-dependent density functional theory (TD-DFT). Even with advancement
in TD-DFT, the computational demanding is still a heavy burden for researchers who wish to
investigate large systems. An alternative method is the density-functional tight-binding (DFTB)
method. Here, we develop a formalism for the calculation of excitation energies and excited
state gradients for the self-consistent-charge DFTB with the third-order contributions of a
Taylor series of DFT energy with respect to the fluctuation of electron density, called TD-
DFTB3.!

In computing excitation energies, the following non-Hermitian eigenvalue problem has to
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where o is the excitation energy and matrix elements of A and B are defined as

be solved,??

Aiacf,jb‘r = 6ar6ab6ij(gacf - 31’0) + Kiacr,jbr )
and

Biacf,jbr iao,bjt

where ¢, is the eigenvalue of i-th molecular orbital, and the element of the coupling matrix

Kiqo,jbr 1S given as the second-order derivative of the total energy with respect to density

matrix elements. For singlet-singlet excitation, the coupling matrix can be written as
1 1
Kigopjr = ZS/,WSKA(VAC +¥gc + Yap +Vep) t+ ESMVSKA[(D!C + Iip)Aqy + (Ipc + Ipp)Aqp
+ (Iea + Iep)Aqc + (Ipa + Ip)Aqp
+ Z{&E((SAC + 6ap) + Igr(8pp + Spp)}AqE].
E

Note that only the first term is necessary in the previous TD-DFTB2.3

Nuclear gradients can be obtained by solving Z-vector equations following the standard



TD-DFT approach.* The third-order derivative of the total energy with respect to density matrix
elements, defined as

1
guvo,xlr,c[)xv = 12 S SK)LSd))( Z{I—AE(6AC + 6AD) + FBE((SBC + SBD)}(aqbeE + 6)(6E)'
E

is necessary in TD-DFTB3, and it is missing in the previous formulation for TD-DFTB2.° A

general equation for excitation energy gradient is finaIIy given as
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where B, Wm,,,, and I, ,mm are obtained as a solution of Z-vector equations. The
presented method has been implemented in GAMESS-US, and the implementation may be
available in a future release.

Because of the limit in length, only the computational efficiency is highlighted here. For
demonstration, trans-polyacetylene (Cao0Ha02) which contained 2,002 basis functions had been
chosen. Five lowest excitation energies were calculated, and the first excitation vectors were
used in the gradient calculation. With TD-DFTB3, ground state SCF took 213.82 s, and the
computation of excitation energies and gradient took 819.92 and 45.54 s with one CPU of Xeon
E5-1620 v3 (3.50GHz). The additional computational cost for TD-DFTB3 compared to TD-
DFTB2 is virtually negligible. These timings are probably one or two orders of magnitude faster
than those of TD-DFT. It is therefore possible to apply TD-DFTB for medium-size molecules
routinely. In the poster, calculated absorption and fluorescence energies of cresyl violet in
explicit water molecules (~400 atoms) will be briefly discussed as well as the comparison of
the performance of TD-DFTB2 and TD-DFTB3.
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