3P066

[Cu₂(X-BA)₄(pyz)]_n(X=H, 3-F, 2,3-F)の水素およびエチレン吸蔵と 吸蔵された分子の運動状態 (北大・院総化*、北大・院理**)○眞田孝輔*、景山義之**、丸田悟朗**、武田定**

 H_2 and C_2H_4 adsorption of $[Cu_2(X-BA)_4(pyz)]_n(X=H, 3-F, 2,3-F)$ and their dynamics in the host crystal.

(Grad. Sch. Chem. Sci. and Eng., Hokkaido Univ.*,Faculty of Sci., Hokkaido Univ.**) OKosuke Sanada*, Yoshiyuki Kageyama**, Goro Maruta**, Sadamu Takeda**

【序】多孔性配位高分子錯体(MOF)は、その気体吸蔵性から、近年、研究が進められてきた。 その中でも、当研究室では、[Cu₂(BA)₄(pyz)]_n(以下、BA 錯体)について研究を行ってきた。こ の BA 錯体の特徴として、気体吸蔵に伴う構造相転移がある。先行研究^[1]では、CO₂吸蔵におけ る BA 錯体の構造相転移が報告されており、吸蔵前後で BA 錯体は、7%もの体積変化を示すこと が分かった。(Fig.1)そこで、本研究では CO₂ と同様に分子間引力が大きい C₂H₄について、そ の吸蔵特性やホストーゲスト相互作用を調べた。また、BA 錯体と異なる配位子をもつ、[Cu₂(3 -FBA)₄(pyz)]_n(3-FBA 錯体)、[Cu₂(2,3-FBA)₄(pyz)]_n(2,3-FBA 錯体)^[2]についても、C₂H₄ の吸蔵特性を調べ、BA 錯体と比較した。一方、分子間引力の小さい H₂についても、各錯体での 吸蔵特性を調べた。

V/Z : 804.8Å³

V/Z :863.5Å³

(Fig.1) BA 錯体の CO2 吸蔵における構造および体積変化

【実験】

I) BA 錯体について、 C_2H_4 と He の混合ガス(全圧は、1013 hPa)気流中で、DSC 測定を行った。このとき、 C_2H_4 の分圧のみを下げながら測定することで、相転移温度の C_2H_4 分圧依存性を調べ、その結果から BA 錯体と C_2H_4 のホストーゲスト相互作用を検討した。また、その結果を CO_2 の場合と比較した。

II) 3-FBA 錯体、2,3-FBA 錯体の C_2H_4 吸蔵挙動を DSC 測定で調べた。また、自作した装置 により、BA 錯体を含めた各錯体の C_2H_4 吸蔵量も調べた。

Ⅲ)各錯体のH2吸蔵挙動を、DSC 測定で調べた。また、C2H4と同様に、各錯体のH2吸蔵量を

調べた。

【結果と考察】

I) BA 錯体結晶と平衡にある C₂H₄の分圧を下げていくと構造相転移温度(ここでは便宜的に

DSC カーブの peak top とした)が低温側にシフト した。(Fig.2) このとき、相転移温度の逆数に対し て C₂H₄分圧をプロットしたところ、クラウジウス クラペイロンの式でよく説明ができた。この結果か ら、錯体のホスト格子に取り込まれた C₂H₄の気化 熱を求めた。また、CO₂の結果と比べ、比較検討し た。詳細は当日報告する。

Ⅱ) 2,3-FBA 錯体、3-FBA 錯体に対し、C₂H₄1
気圧下で、DSC 測定を行った。(Fig.3) 2,3-FBA
錯体に注目すると、昇温過程で2回にわたって気体
放出と構造相転移が起こっている。さらに、吸蔵量
実験から、1つの相転移に伴って、[Cu₂(2,3-

FBA)₄(**pyz**)]1 mol あたり、約 1 mol の C₂H₄ が放出 されていることが分かった。今後は、固体 NMR を 用いて、錯体に取り込まれた C₂H₄ の運動状態に ついて検討を行う予定である。

III) 各錯体の H₂1 気圧下での DSC 測定結果を Fig.4 に示した。これより、各錯体は低温で H₂ を吸蔵することが分かった。また、当研究室では、 BA 錯体中において、水素分子は、2つの site を flip-flop していることを見出している。^[3]今後は、 BA 錯体以外についても、吸蔵された水素分子の 運動状態を調べる予定である。

S. Takamizawa, *et al., J. Am. Chem. Soc.,* 2010, 132, 3783-3792
K. Takahashi, *et al., Dalton Trans.*, 2014,
43, 9081-9089
: 柿崎圭紀, 修士論文, 2011

(Fig.2) さまざまな C₂H₄ 分圧下での DSC 測定