3P046

D-π-A 有機色素を含む太陽電池の等価回路解析と内部抵抗測定

(城西大理)○藤谷拓夢、高橋千晶、鈴木彩音、五味友希、 立野 楊、田中伸英、見附孝一郎、高橋克弥、橋本雅司

Identifying internal resistors based on equivalent circuit analyses of solar cells with D-π-A organic dyes (Josai Univ.) ○Takumu Fujia, Chiaki Takahashi, Ayane Suzuki, Tomoki Gomi, Yo Tatsuno, Nobuhide Tanaka, Koichiro Mitsuke, Katsuya Takahashi, Masashi Hashimoto

【序】我々は低価格で高効率の色素増感太陽電池 DSSC を開発する目的で、プッシュプル D-π-A型色素を合成し、電池を組立てて性能評価を行っている。色素の構成要素としては、電子供与ユニット D としてトリフェニルアミン誘導体を、π共役部位 π としてフルオレン誘導体-チオフェン環を、電子受容ユニット A 兼 TiO₂ナノ粒子への配位子として

シアノアクリル酸を用いた。本研究では、図1右上に示す3通り

の「橋掛け融合化 (fusing)」を D ユニットに 施すことで、D、π 両ユニット間のπ電子軌 道重なりの改善を試みた。さらに、電圧電流 曲線および交流インピーダンスの測定なら びに等価回路解析によって、DSSC の内部抵 抗を推定した。

【実験】D としてトリフェニルアミン (TPA)、 フェニルカルバゾール (PhCz)、インドロカ ルバゾール (IND)、カルバゾールフェニル (CzPh) の4種類の含窒素化合物から一つ

Fig. 1. D- π -A dye with a triphenylamine donor unit

を選択し、D-π-A型色素を有機合成した。導電性ガラス上の 0.25 cm²の範囲に自作の TiO₂ペース トを塗布し、500℃で焼成し、各色素の THF 溶液に浸漬することで DSSC の陽極を形成させた。 陰極は白金ペーストを塗布し、400℃で焼成して作製した。ヨウ素系電解液を両電極で挟み込み太 陽電池を組立てた¹⁾。 Table 1. Photovoltaic performance of the DSSCs made

【結果と考察】DSSC の電流密度 J-電 圧 V曲線から得られた光電変換特性を 表1にまとめた。電力変換効率ηで比 較すると、IND と PhCz が TPA と CzPh に比べて約 25%だけ高い値を示した。 次に、交流インピーダンス測定(NIS) から図 2 右のナイキストプロットを 得た。この曲線の実数軸側半径と陽極 面積から、DSSC の4種類の内部抵抗、

Table 1. Photovoltaic performance of the DSSCs made from the D- π -A dyes with four different donor units.

Donor Unit		J _{sc} [mA/cm ²]	V _{oc} [V]	FF	η[%]	ε
TPA		4.75	0.58	0.68	1.85	44600
IND		5.50	0.62	0.68	2.32	49600
PhCz		5.68	0.65	0.64	2.36	44700
CzPh	R	4.83	0.60	0.64	1.85	48100

即ち、導電性ガラスの抵抗 *R*_h、白金触媒の酸化還元反応に関わる抵抗 *R*₁、TiO₂の伝導帯電子と I₃⁻の電荷再結合に関わる抵抗 *R*₂、酸化還元対 Γ/I₃⁻の電子輸送に関わる抵抗 *R*₃を推定した(図2左下)。次に DSSC が図2左上の回路と等価であると仮定し、理論式

を J - V曲線と暗電流曲線にフィットさせることで、逆飽和電流 A、直列抵抗 R_s 、並列抵抗 R_{sh} を 最適化した。PhCz 色素の R_s 値は 13 Ω cm² で収束するが、これは NIS 測定から得られた $R_1 + R_3 + R_h$ = 10.6 Ω cm² より少し大きくな

る。続いて、開放電圧 V_{OC} 付近 の特性抵抗 $R(V_{OC})$ は、J-V曲 線の勾配から 14 Ω cm² と求め られ、理論値の $R_1+R_2+R_h =$ 12.8 Ω cm² と誤差範囲内で一致 した。ここで、電解液 Γ/I_3^- の容量 C_3 の充電がJ-V測定の 電圧掃引速度に追随できない ため、 $R(V_{OC})$ への並列抵抗 R_3 の寄与は無視できるとした。

表 1 のηを色素間で比較する と、3 個のフェニル環が捻じれ 構造を取る TPA よりも、環同

Fig. 2. Nyquist plots for the cells with $D-\pi$ -A dyes and the internal registers of DSSCs derived from the plots.

士を結ぶ橋掛けの数がふえて D の平面性が高くなった PhCz と IND の方が、変換効率が高くなっ ている。そこで、D、π間のπ電子軌道重なりをさらに改善する目的で、新規色素を設計し合成・ 単離した(図 3 上の dm3)。この dm3 ではフルオレンの左右のベンゼン環が、それぞれ TPA とチ オフェンに橋掛け融合されている。dm3 の η 値は約 3.0%となり、我々の D-π-A 色素の中での最高 値を記録した。J-V曲線と暗電流曲線に対する等価回路解析から $R_{\rm S}$ = 7 Ω cm², $R_{\rm Sh}$ = 8 kΩ cm²,

 $R(V_{OC}) = 10 \Omega \text{ cm}^2$ が得られた。一方 NIS 測定か ら得た内部抵抗は、それぞれ $R_h = 2.6 \Omega \text{ cm}^2$, R_1 = 4.0 $\Omega \text{ cm}^2$, $R_2 = 4.9 \Omega \text{ cm}^2$, $R_3 < 0.5 \Omega \text{ cm}^2$ とな った。したがって、 $R_1 + R_3 + R_h < 7.1 \Omega \text{ cm}^2$ およ び $R_1 + R_2 + R_h = 11.5 \Omega \text{ cm}^2$ となるが、これらは それぞれ R_S と $R(V_{OC})$ によく一致する。以上か らも図 2 での考察の妥当性が裏付けられた。

- M. Wakayama et al., 30th Symp. Chem. Kinet. Dynam. (Himeji), 2P23, June 2014.
- K. Mitsuke et al., 31st Symp. Chem. Kinet. Dynam. (Sapporo), 1A08, June 2015.

Fig. 3. J-V curves of the DSSCs made from dm3.