## 3P046

## D-π-A 有機色素を含む太陽電池の等価回路解析と内部抵抗測定

(城西大理)○藤谷拓夢、高橋千晶、鈴木彩音、五味友希、 立野 楊、田中伸英、見附孝一郎、高橋克弥、橋本雅司

Identifying internal resistors based on equivalent circuit analyses of solar cells with D-π-A organic dyes (Josai Univ.) ⊙Takumu Fujia, Chiaki Takahashi, Ayane Suzuki, Tomoki Gomi, Yo Tatsuno, Nobuhide Tanaka, Koichiro Mitsuke, Katsuya Takahashi, Masashi Hashimoto

【序】我々は低価格で高効率の色素増感太陽電池 DSSC を開発する目的で、プッシュプル D- $\pi$ -A 型色素を合成し、電池を組立てて性能評価を行っている。色素の構成要素としては、電子供与ユニット D としてトリフェニルアミン誘導体を、 $\pi$  共役部位  $\pi$  としてフルオレン誘導体ーチオフェン環を、電子受容ユニット A 兼  $TiO_2$  ナノ粒子への配位子としてシアノアクリル酸を用いた。本研究では、図 1 右上に示す 3 通り

の「橋掛け融合化(fusing)」を D ユニットに施すことで、D、 $\pi$  両ユニット間の $\pi$ 電子軌道重なりの改善を試みた。さらに、電圧電流曲線および交流インピーダンスの測定ならびに等価回路解析によって、DSSC の内部抵抗を推定した。

【実験】D としてトリフェニルアミン (TPA)、フェニルカルバゾール (PhCz)、インドロカルバゾール (IND)、カルバゾールフェニル (CzPh) の4種類の含窒素化合物から一つ



**Fig. 1.** D- $\pi$ -A dye with a triphenylamine donor unit

を選択し、D- $\pi$ -A 型色素を有機合成した。導電性ガラス上の  $0.25~\mathrm{cm}^2$  の範囲に自作の  $\mathrm{TiO_2}$ ペーストを塗布し、500 $^{\circ}$  で焼成し、各色素の THF 溶液に浸漬することで DSSC の陽極を形成させた。 陰極は白金ペーストを塗布し、400 $^{\circ}$  で焼成して作製した。ヨウ素系電解液を両電極で挟み込み太陽電池を組立てた  $^{1)}$ 。

Table 1. Photovoltaic performance of the DSSCs made

【結果と考察】DSSC の電流密度 J-電 EV曲線から得られた光電変換特性を表 1 にまとめた。電力変換効率 $\eta$ で比較すると、IND と PhCz が TPA と CzPh に比べて約 25%だけ高い値を示した。次に、交流インピーダンス測定(NIS) から図 2 右のナイキストプロットを得た。この曲線の実数軸側半径と陽極面積から、DSSC の 4 種類の内部抵抗、

**Table 1.** Photovoltaic performance of the DSSCs made from the D- $\pi$ -A dyes with four different donor units.

| Donor<br>Unit |   | J <sub>sc</sub> [mA/cm <sup>2</sup> ] | V <sub>oc</sub> [V] | FF   | η [%] | ε     |
|---------------|---|---------------------------------------|---------------------|------|-------|-------|
| TPA           | 0 | 4.75                                  | 0.58                | 0.68 | 1.85  | 44600 |
| IND           |   | 5.50                                  | 0.62                | 0.68 | 2.32  | 49600 |
| PhCz          |   | 5.68                                  | 0.65                | 0.64 | 2.36  | 44700 |
| CzPh          |   | 4.83                                  | 0.60                | 0.64 | 1.85  | 48100 |

即ち、導電性ガラスの抵抗  $R_{\rm h}$ 、白金触媒の酸化還元反応に関わる抵抗  $R_{\rm 1}$ 、 ${\rm TiO_2}$  の伝導帯電子と  ${\rm I_3}^-$  の電荷再結合に関わる抵抗  $R_{\rm 2}$ 、酸化還元対  ${\rm I}/{\rm I_3}^-$ の電子輸送に関わる抵抗  $R_{\rm 3}$  を推定した(図 2 左下)。次に DSSC が図 2 左上の回路と等価であると仮定し、理論式

$$J_{\text{SC}} - J - \frac{V + J \cdot R_{\text{S}}}{R_{\text{SD}}} - A \left[ \exp\left(\frac{F}{nRT}\right) (V + J \cdot R_{\text{S}}) - 1 \right] = 0$$
 (1)  $(n = 1.0$ と設定)

を J-V曲線と暗電流曲線にフィットさせることで、逆飽和電流 A、直列抵抗  $R_s$ 、並列抵抗  $R_s$ トを 最適化した。PhCz 色素の  $R_S$  値は 13  $\Omega$  cm² で収束するが、これは NIS 測定から得られた  $R_1+R_3+R_h$ 

 $=10.6 \ \Omega \ cm^2$  より少し大きくなる。続いて、開放電圧  $V_{\rm OC}$  付近の特性抵抗  $R(V_{\rm OC})$  は、J-V 曲線の勾配から  $14 \ \Omega \ cm^2$  と求められ、理論値の  $R_1+R_2+R_h=12.8 \ \Omega \ cm^2$  と誤差範囲内で一致した。ここで、電解液  $\Gamma/I_3^-$  の容量  $C_3$  の充電が J-V 測定の電圧掃引速度に追随できないため、 $R(V_{\rm OC})$ への並列抵抗  $R_3$  の寄与は無視できるとした。

表  $1 \, O\eta$ を色素間で比較する と、 $3 \, \text{個のフェニル環が捻じれ}$ 構造を取る TPA よりも、環同



**Fig. 2.** Nyquist plots for the cells with D- $\pi$ -A dyes and the internal registers of DSSCs derived from the plots.

士を結ぶ橋掛けの数がふえて D の平面性が高くなった PhCz と IND の方が、変換効率が高くなっている。そこで、D、 $\pi$  間の $\pi$ 電子軌道重なりをさらに改善する目的で、新規色素を設計し合成・単離した(図 3 上の dm3)。この dm3 ではフルオレンの左右のベンゼン環が、それぞれ TPA とチオフェンに橋掛け融合されている。dm3 の $\eta$ 値は約 3.0%となり、我々の D- $\pi$ -A 色素の中での最高値を記録した。J-V曲線と暗電流曲線に対する等価回路解析から  $R_S=7$   $\Omega$   $cm^2$ ,  $R_{Sh}=8$   $k\Omega$   $cm^2$ ,

 $R(V_{\rm OC})=10~\Omega~{\rm cm}^2$ が得られた。一方 NIS 測定から得た内部抵抗は、それぞれ  $R_{\rm h}=2.6~\Omega~{\rm cm}^2$   $R_1=4.0~\Omega~{\rm cm}^2$   $R_2=4.9~\Omega~{\rm cm}^2$   $R_3<0.5~\Omega~{\rm cm}^2$  となった。したがって、 $R_1+R_3+R_{\rm h}<7.1~\Omega~{\rm cm}^2$  および  $R_1+R_2+R_{\rm h}=11.5~\Omega~{\rm cm}^2$  となるが、これらはそれぞれ  $R_{\rm S}$  と  $R(V_{\rm OC})$ によく一致する。以上からも図 2 での考察の妥当性が裏付けられた。

- M. Wakayama et al., 30<sup>th</sup> Symp. Chem. Kinet. Dynam. (Himeji), 2P23, June 2014.
- K. Mitsuke et al., 31<sup>st</sup> Symp. Chem. Kinet. Dynam. (Sapporo), 1A08, June 2015.



Fig. 3. *J-V* curves of the DSSCs made from dm3.