3E05

金属クラスターとの相互作用における各種担体表面の特徴と比較: 理論的研究

(京大 ESICB¹、京大 FIFC²) ○松井 正冬¹、榊 茂好 ¹,²

Comparison and characterization of support surfaces upon interaction with metal clusters: Theoretical study

(ESICB, Kyoto Univ.¹, FIFC, Kyoto Univ.²) OMasafuyu Matsui¹ and Shigeyoshi Sakaki^{1, 2}

【序論】 SiO_2 、 Al_2O_3 、 CeO_2 などの金属酸化物は、金属担持触媒の担体として広く用いられている。金属微粒子と担体表面との相互作用は、触媒活性の制御・向上に重要な役割を果たす。例えば自動車排ガス浄化 Rh 触媒では、担体を従来の Al_2O_3 から $AlPO_4$ に変えることにより高活性を示すことが報告されている。 1 これは Rh から $AlPO_4$ 表面への電荷移動 (CT) による強い金属—表面相互作用によって、Rh 粒成長が抑制されるためであることが、実験及び理論研究から示されている。 1,2 このように金属—表面相互作用は金属担持触媒の活性を決める重要な因子であるが、その理解や予測はほとんど進んでいない。本研究では、この金属—表面相互作用の統一的理解を目的として、スラブモデルを用いた平面波 DFT 計算により SiO_2 、 Al_2O_3 、 CeO_2 、 $AlPO_4$ 表面への Rh_2 、 Pt_2 の吸着安定性の評価を行った。そして金属—表面相互作用を担体表面の吸着による構造変化、電荷分布変化、バンド構造変化に基づき解析し、吸着機構を解明し金属・担体による違いの原因を明らかにした。

【表面モデルと計算手法】 SiO_2 では β -cristobalite SiO_2 (110) 水和表面モデル (以後 SiO_2^{hy} と表記) を、 Al_2O_3 では γ - Al_2O_3 (110) 水和表面モデル ($Al_2O_3^{hy}$) と γ - Al_2O_3 (100) 無水表面モデル ($Al_2O_3^{nh}$) を、 CeO_2 では fluorite CeO_2 (111) 無水表面モデル (CeO_2^{nh}) を、 $AlPO_4$ では β -tridymite $AlPO_4$ (110) 無水表面モデル ($AlPO_4^{nh}$) と水和表面モデル ($AlPO_4^{hy}$) を構築した。金属クラスターの最小モデルとして、 Rh_2 、 Pt_2 を採用した。スラブモデルの計算には VASP を用いた。

全系 (例えば $Rh_2/AIPO_4$ 等の吸着系) のバンド $\psi_{i,k}$ は部分系 (孤立 Rh_2 と $AIPO_4$ 表面) のバンド ϕ_{Fn,k_F} の線形結合 (LCBO) として以下のように表現される。 3

$$\psi_{i,k}(\mathbf{r}) = \sum_{\mathbf{R}_F} \sum_{Fn} \phi_{Fn,k_F}(\mathbf{r} - \mathbf{R}_F) C_{Fn,k} \exp(i\mathbf{K} \cdot \mathbf{R}_F) / N_F$$

LCBO に基づき、全系のバンドにおける部分系のバンドの寄与は、projected density of states (P-DOS) から求めることができる。この P-DOS を用いて金属-表面間の CT を解析する。

【結果と考察】 Rh_2 , Pt_2 の各種担体への吸着エネルギーと、吸着前後での Bader 電荷変化を表 1 にまとめた。 Rh_2 の吸着安定性は、 $SiO_2^{hy} < Al_2O_3^{hy} < Al_2O_3^{nh} \le CeO_2^{nh} < AlPO_4^{nh} < AlPO_4^{hy}$ の順番となった。 $AlPO_4^{nh}$ の差電荷密度(図 1 (a))は Rh_2 から表面 3 配位 $Al \sim 0$ CT を示した。 吸着による $AlPO_4^{nh}$ 表面の構造変化によって、Al 上に局在化した孤立最低非占有(LU)バンドが生成していた。この LU バンドの P-DOS は吸着系の価電子バンドに現れており(図 1 (b))、

 Rh_2 から LU バンドへの CT の存在を示している。この CT が、 Rh_2 /A IPO_4 ^{nh} の強い Rh-表面相 互作用の原因だと考えられる。 $AIPO_4$ ^{hy} でも同様であった。 AI_2O_3 ^{nh} では、吸着エネルギーは $AIPO_4$ より小さい。差電荷密度(図 2 (a))には Rh_2 から表面への CT は見られず、LU バンド の P-DOS は価電子・導電バンドの双方に分布している(図 2 (b))。これは、表面 3 配位 AI の 存在しない AI_2O_3 では LU バンドのエネルギー準位は $AIPO_4$ より高く、その結果、 Rh_2 から AI_2O_3 表面への CT は起きるが弱くなり、吸着エネルギーが減少したと考えられる。 CeO_2 ^{nh}、 AI_2O_3 ^{hy}、 SiO_2 ^{hy} についても、P-DOS の解析より AI_2O_3 ^{nh} と同様に CT が弱くなることが示された。

 Pt_2 の吸着安定性は、 SiO_2^{hy} < $Al_2O_3^{hy}$ < $Al_2O_3^{nh}$ < CeO_2^{nh} < $AlPO_4^{nh}$ < $AlPO_4^{hy}$ と順番は Rh_2 と同様となり、安定化は Rh_2 よりも大きかった。P-DOS の解析からは Rh_2 と同様に Pt_2 から表面への CT が起きていることが示されたが、Bader 解析からは吸着による Pt_2 の電子増大が見られ、担体表面から Pt_2 への CT の存在が示唆された。 HOMO、 LUMO の準位はどちらも Pt_2 の方が Rh_2 よりも低く、表面への CT は起こりやすい。また、電場の分布より、結合軸垂直方向では Pt_2 の方が Rh_2 よりも表面上の正電荷との相互作用が安定化される。以上より、 Pt_2 の大きな吸着安定化エネルギーは、表面から Pt_2 への Pt_2 と表面との静電相互作用によるものと考えられる。

表 1	Rh ₂ , Pt ₂	の吸着エネルギー	E _{ad} (eV)	及び吸着前後の Bader 電荷変化	$\Delta N_{\rm el}(e)$
-----	-----------------------------------	----------	----------------------	--------------------	------------------------

		SiO ₂ ^{hy}	Al ₂ O ₃ ^{hy}	Al ₂ O ₃ ^{nh}	CeO ₂ ^{nh}	AlPO ₄ ^{nh}	AlPO ₄ ^{hy}
Rh ₂	E_{ad}	-0.67	-1.59	-2.41	-2.75	-3.63	-4.54
	ΔN_{el}^{*}	+0.00	+0.07	+0.28	-0.36	-0.08	-0.05
Pt_2	E_{ad}	-0.82	-1.91	-2.72	-2.84	-4.13	-5.20
	ΔN_{el}^{*}	+0.18	+0.32	+0.45	+0.10	+0.17	+0.23

^{*} 正値は吸着による電子増大を、負値は減少を示す。

図2 Rh₂/Al₂O₃^{nh}: (a) 差電荷密度, (b) DOS

M. Machida, S. Minami, S. Hinokuma, H. Yoshida, Y. Nagao, T. Sato, and Y. Nakahara, *J. Phys. Chem.* C, **2015**, *119*, 373–380.

² M.Matsui, M. Machida, and S. Sakaki, *J. Phys. Chem. C*, **2015**, in press.

³ M. Matsui, J. Phys. Chem. C, **2014**, 118, 19294–19307.