3E05

金属クラスターとの相互作用における各種担体表面の特徴と比較: 理論的研究

(京大 ESICB¹、京大 FIFC²) 〇松井 正冬¹、榊 茂好^{1,2}

Comparison and characterization of support surfaces upon interaction with metal clusters: Theoretical study

(ESICB, Kyoto Univ.¹, FIFC, Kyoto Univ.²) OMasafuyu Matsui¹ and Shigeyoshi Sakaki^{1, 2}

【序論】SiO₂、Al₂O₃、CeO₂などの金属酸化物は、金属担持触媒の担体として広く用いられ ている。金属微粒子と担体表面との相互作用は、触媒活性の制御・向上に重要な役割を果た す。例えば自動車排ガス浄化 Rh 触媒では、担体を従来の Al₂O₃から AlPO₄に変えることによ り高活性を示すことが報告されている。¹これは Rh から AlPO₄表面への電荷移動 (CT) によ る強い金属-表面相互作用によって、Rh 粒成長が抑制されるためであることが、実験及び理 論研究から示されている。^{1,2}このように金属-表面相互作用は金属担持触媒の活性を決める重 要な因子であるが、その理解や予測はほとんど進んでいない。本研究では、この金属-表面相 互作用の統一的理解を目的として、スラブモデルを用いた平面波 DFT 計算により SiO₂、Al₂O₃、 CeO₂、AlPO₄表面への Rh₂、Pt₂の吸着安定性の評価を行った。そして金属-表面相互作用を担 体表面の吸着による構造変化、電荷分布変化、バンド構造変化に基づき解析し、吸着機構を 解明し金属・担体による違いの原因を明らかにした。

【表面モデルと計算手法】 SiO₂では β -cristobalite SiO₂(110) 水和表面モデル (以後 SiO₂^{hy}と 表記)を、Al₂O₃では γ -Al₂O₃(110) 水和表面モデル (Al₂O₃^{hy}) と γ -Al₂O₃(100) 無水表面モデル (Al₂O₃^{nh})を、CeO₂では fluorite CeO₂(111) 無水表面モデル (CeO₂^{nh})を、AlPO₄では β -tridymite AlPO₄(110) 無水表面モデル (AlPO₄^{nh})と水和表面モデル (AlPO₄^{hy})を構築した。金属クラス ターの最小モデルとして、Rh₂、Pt₂を採用した。スラブモデルの計算には VASP を用いた。

全系 (例えば $Rh_2/AlPO_4$ 等の吸着系)のバンド $\psi_{i,k}$ は部分系 (孤立 Rh_2 と $AlPO_4$ 表面)のバンド ϕ_{Fn,k_F} の線形結合 (LCBO) として以下のように表現される。³

$$\psi_{i,\boldsymbol{k}}(\boldsymbol{r}) = \sum_{\boldsymbol{R}_F} \sum_{Fn} \phi_{Fn,\boldsymbol{k}_F}(\boldsymbol{r} - \boldsymbol{R}_F) C_{Fn,\boldsymbol{k}} \exp(i\boldsymbol{K} \cdot \boldsymbol{R}_F) / N_F$$

LCBO に基づき、全系のバンドにおける部分系のバンドの寄与は、projected density of states (P-DOS) から求めることができる。この P-DOS を用いて金属-表面間の CT を解析する。

【結果と考察】 Rh₂, Pt₂の各種担体への吸着エネルギーと、吸着前後での Bader 電荷変化 を表1にまとめた。Rh₂の吸着安定性は、SiO₂^{hy} < Al₂O₃^{hy} < Al₂O₃^{nh} ≤ CeO₂^{nh} < AlPO₄^{nh} < AlPO₄^{hy} の順番となった。AlPO₄^{nh}の差電荷密度(図1(a))はRh₂から表面3配位AlへのCTを示した。 吸着によるAlPO₄^{nh}表面の構造変化によって、Al上に局在化した孤立最低非占有(LU)バン ドが生成していた。このLUバンドのP-DOSは吸着系の価電子バンドに現れており(図1(b))、 Rh_2 から LU バンドへの CT の存在を示している。この CT が、 Rh_2 /AIPO₄^{nh}の強い Rh-表面相 互作用の原因だと考えられる。AIPO₄^{hy}でも同様であった。Al₂O₃^{nh}では、吸着エネルギーは AIPO₄より小さい。差電荷密度 (図 2 (a)) には Rh₂から表面への CT は見られず、LU バンド の P-DOS は価電子・導電バンドの双方に分布している (図 2 (b))。これは、表面 3 配位 Al の 存在しない Al₂O₃では LU バンドのエネルギー準位は AIPO₄より高く、その結果、 Rh_2 から Al₂O₃表面への CT は起きるが弱くなり、吸着エネルギーが減少したと考えられる。CeO₂^{nh}、 Al₂O₃^{hy}、SiO₂^{hy}についても、P-DOS の解析より Al₂O₃^{nh} と同様に CT が弱くなることが示され た。

Pt₂の吸着安定性は、SiO₂^{hy} < Al₂O₃^{hy} < Al₂O₃^{nh} ≤ CeO₂^{nh} < AlPO₄^{nh} < AlPO₄^{hy} と順番は Rh₂ と同様となり、安定化は Rh₂よりも大きかった。P-DOS の解析からは Rh₂と同様に Pt₂から表面への CT が起きていることが示されたが、Bader 解析からは吸着による Pt₂の電子増大が見られ、 担体表面から Pt₂への CT の存在が示唆された。HOMO、LUMO の準位はどちらも Pt₂の方が Rh₂よりも低く、表面への CT は起こりやすい。また、電場の分布より、結合軸垂直方向では Pt₂の方が Rh₂よりも表面上の正電荷との相互作用が安定化される。以上より、Pt₂の大きな吸 着安定化エネルギーは、表面から Pt₂への CT や、Pt₂と表面との静電相互作用によるものと 考えられる。

		${\rm SiO_2}^{\rm hy}$	$Al_2O_3^{hy}$	$Al_2O_3^{nh}$	CeO ₂ ^{nh}	AlPO ₄ ^{nh}	AlPO ₄ ^{hy}
Rh_2	E_{ad}	-0.67	-1.59	-2.41	-2.75	-3.63	-4.54
	$\Delta {N_{el}}^{*}$	+0.00	+0.07	+0.28	-0.36	-0.08	-0.05
Pt_2	E_{ad}	-0.82	-1.91	-2.72	-2.84	-4.13	-5.20
	$\Delta {N_{el}}^{*}$	+0.18	+0.32	+0.45	+0.10	+0.17	+0.23

表1 Rh₂, Pt₂ の吸着エネルギー E_{ad} (eV) 及び吸着前後の Bader 電荷変化 ΔN_{el} (e)

* 正値は吸着による電子増大を、負値は減少を示す。

¹ M. Machida, S. Minami, S. Hinokuma, H. Yoshida, Y. Nagao, T. Sato, and Y. Nakahara, *J. Phys. Chem.* C, **2015**, *119*, 373–380.

² M.Matsui, M. Machida, and S. Sakaki, J. Phys. Chem. C, **2015**, in press.

³ M. Matsui, J. Phys. Chem. C, **2014**, 118, 19294–19307.