部分分子置換したκ-(BEDT-TTF)₂Cu₂(CN)₃の ESR 測定

(山梨大学*,分子科学研究所**,東北大学金属材料研究所***)○谷戸雄弥*,米山直樹*,中村敏和**,佐々木孝彦***

ESR measurement of partly molecular substituted κ -(BEDT-TTF)₂Cu₂(CN)₃

(Univ. of Yamanashi*, IMS**, Tohoku Univ., IMR***) ○Yuya Yato*, Naoki Yoneyama*, Toshikazu Nakamura**, Takahiko Sasaki***

【序】

κ-(BEDT-TTF)₂Cu₂(CN)₃はドナー分子 BEDT-TTF(ET)が強く二量体化した構造を有する ダイマーモット絶縁体の一つであるが、三角格子のフラストレーションの影響で極低温でも 長距離秩序を示さない量子スピン液体としての基底状態を有していると考えられている 1)。 これまで我々は、κ-(ET)₂Cu₂(CN)₃のドナーをより小さいドナー分子 BMDT-TTF(MT)で部分 分子置換することで、ET ダイマーの空間反転対称性を壊 し、それによってフラストレーションを抑制することを 試みてきた。静磁化率は、MT1%添加塩では未置換塩と S S ET 異なり5K以下で磁化率がゼロに向かうように見えるが²⁰、 S S S 静磁化率では結晶を複数個用いていることとあわせて試 料依存性が大きく、系統的な実験が難しい。そこで今回 は単結晶1 個を用いて ESR によるスピン磁化率の実験を MT 行った。

【実験】

MT を 0, 1, 10 %添加した κ -(ET)₂Cu₂(CN)₃を電気化学的酸化還元法により結晶育成した。 支持電解質は κ ^{*}相が育成されない KCN, Cu¹CN, 18-crown-6 の組み合わせを用いた ³。実験 は低温 ESR 測定を X-band ESR(Bruker 社製 E-500)とクライオスタット(ESR910)を用いて 行った。それぞれ単結晶 1 個を用いて静磁場は伝導面に平行とし、1.5—20 K の温度範囲で 実験を行った。

【結果と考察】

まず、得られた結晶は抵抗測定²⁰と今回の ESR の結果から κ ²型ではないことを確認した。 未置換塩(以下 0%塩)と1%添加塩の ESR 信号を Fig.1 に示す。0%塩では 1.5—20 K の全温 度域で ESR 信号ははっきり観測され、過去の報告例³⁰を良く再現している。温度の低下に伴 い線幅(Fig.2(b))は先鋭化し、スピン磁化率(Fig.2(a))は T→0 K で有限にとどまるふるまいを する。これに対し1%添加塩では 3.5 K 以下で ESR 信号が測定感度以下まで小さくなり急に

消失するという結果が得られた。 これは静磁化率の結果とも一致 する 2)。二つの 1 %添加塩(#1, #2)の線幅にやや試料依存性が あるものの、スピン磁化率につ いては再現性のある結果が得 units) られた。さらに 10%添加塩で Intensity (arbitrary はスピン磁化率は逆に増加す る。以上の結果は、不純物分 子 MT の添加により量子スピ ン液体状態が抑制され、非磁 性の基底状態が発現したこと を示唆している。すなわち、 MT の添加により局所的にフラ ストレーションが解消され、1% 添加塩では singlet 的な基底状態 になっている可能性が高い。また、 10%添加塩では乱れの影響が強すぎ るため、孤立した局在スピンが 生成したと考えられる。

【参考文献】

- Y. Shimizu et al., Phys. Rev. Lett., 91 (2003) 107001.
- N. Yoneyama et al., 日本物理学会, 2012 年 秋季大会, 20pEB-7
- T. Komatsu et al., J.Phys. Soc. Japan 65,5, 1340(1986).

Fig.2(a) スピン磁化率と(b) 線幅の温度依存性