極低温気相クラウンエーテル包接イオン錯体のレーザー分光 (広島大院・理¹, エクス・マルセイユ大学²)〇江幡孝之¹, 井口 佳哉¹, 森島 史哉¹,

灰野 岳晴¹, 関谷 亮¹, Claude Dedonder², Christophe Jouvet²

Laser spectroscopic study on cryogenically cooled complex ions of crown ethers in the gas phase

(Graduate School of Science, Hiroshima Univ.¹, CNRS, Aix-Marseille Univ.²) ^OTakayuki Ebata¹, Yoshiya Inokuchi¹, Fumiya Morishima¹, Takeharu Haino¹, Ryo Sekiya¹, Claude Dedonder², Christophe Jouvet²

【序】クラウンエーテル(CE)はホストーゲスト化学において盛んに用いられているホスト分子 である。我々のグループではこれまで CE が金属イオンや中性分子を包接する際のコンフォ メーション変化を、気相極低温条件下でのレーザー分光や量子化学計算をもとに研究を行 って来た。本研究では、プロトン付加アミン類と種々の大きさの CE との包接錯体を極低温下 で生成し、電子状態や光励起後の解離を単体と比較し、包接錯体形成がプロトン付加アミ ン類の電子状態や光化学反応に及ぼす効果を調べた。

【実験】包接錯体として、ゲスト分子にプロトン付加アニリン(An・H⁺)およびプロトン付加ジベ ンジルアミン(dBAM・H⁺)を用いた。ホスト分子には色団をもたないクラウンエーテル 15-Crown-5 (15C5), 18-Crown-6 (18C6), 24-Crown-8 (24C8), および発色団をもつ Dibenzo-18-Crown-6(DB18C6), Dibenzo-24-Crown-8 (DB18C8)を用いた。また今回 dBAM・H⁺とクラウンエーテルとの擬ロタキサンを合成してもちいた。実験は、エクス・マルセ イユ大学が保有する ESI/Cold Ion-Trap レーザー分光装置を用いた。図1に、用いた ESI/Cold Ion-Trap 装置図を示す。プロトン付加体や錯体は、エレクトロスプレーイオン化 (ESI)で生成した。イオンは八極子イオンガイドを通じて 20 ~ 30 K に冷却した四極子イオン トラップ(QIT)に導かれ、トラップ内の He 気体との衝突により十分冷却される。QIT 中のイオ

ンにナノ秒可変 UV レーザ ーを照射し解離フラグメント をモニターする UV 光解離 (UVPD)スペクトルを観測し た。解離フラグメントは,リフ レクトロン型TOF 質量測定装 置で同定した。

図1, ESI/Cold Ion-Trap 装置

【結果】①【An•H⁺, An•H⁺•18C6, An•H⁺•15C5】図2に An•H⁺, An•H⁺•18C6, An•H⁺•15C5の S₁-S₀ UVPD スペクトルを示す。An•H⁺では(0,0)バンドが 38,215 cm⁻¹ に現れ 920 cm⁻¹のプロ

グレッションを示す。中性 An に 比べ S_1 - S_0 (0,0)バンドが約 4200 cm⁻¹ blue-shift している。 An•H⁺•18C6 の電子遷移は An•H⁺に比べさらに 350 cm⁻¹ blue-shift するが,振電バンドは ほぼ同じ構造を示す。一方, An•H⁺•15C5 のスペクトルは An•H⁺•18C6 と異なり,大きく blue-shift しブロードな構造しか 示さない。この違いは,ホストの

15C5 では, An•H⁺の NH₃⁺基の対称

図2.(左)(a)An•H⁺, (b)An•H⁺•18C6, (c)An•H⁺•15C5 の UVPD スペクトル,(右)TOF スペクトル

性が低下しベンゼン側との超共役が異なるためと考えられる。また,解離フラグメントをみると An•H⁺では C₅H₅⁺ (m/z=77)が主の解離生成物であるが,An•H⁺•18C6 では 18C6•H⁺ (m/z=267) や,(OCH₂CH₂)₄•H⁺ (m/z=177),(OCH₂CH₂)₃•H⁺ (m/z=133)が解離生成物である。 このことから,An•H⁺•18C6を紫外励起するとAn•H⁺ は解離せず H⁺が 18C6 側に移動し,そ の後 18C6•H⁺として解離するか,さらに 18C6•H⁺が解離している。このように CE が An•H⁺の 電子状態や光解離に対して著しいかご効果を示すことが分かった。

②【dBAM•H⁺, dBAM•H⁺•18C6, dBAM•H⁺•24C8】図3に dBAM•H⁺, dBAM•H⁺•18C6, dBAM•H⁺•24C8のUVPDスペクトルを示す。dBAM•H⁺は37,450 cm⁻¹に(0,0)バンドが現れ

930 cm⁻¹ のプログレッションを^(a) 示 す 。 dBAM•H⁺•18C6, dBAM•H⁺•24C8のUVPDでは, どちらも dBAM•H⁺が解離する (b) が dBAM•H⁺•24C8 の解離生 成の割合が dBAM•H⁺•18C6 に比べ1/10 以下になっている。 この理由は, dBAM•H⁺•24C8 が pseudo-rotaxane 構造になっ ているので, 解離に大きなバリ

ヤーが存在するためと考えられ る。

