1P085

曲線座標を利用した二極小ポテンシャルを持つ分子の VSCF-CI 計算 (首都大学東京 理工学研究科) 〇岩瀬 響,橋本 健朗

VSCF-CI calculation of double well systems using the curvilinear coordinate (Tokyo metropolitan Univ.) OHibiki Iwase, Kenro Hashimoto

【序】近年、VSCF-CI 法が非調和振動解析に広く用いられている。この方法では一般に基準 座標を利用して振動モードを分割する。しかし、多極小ポテンシャルを持つ分子ではポテン シャル関数の振動モード間の結合が強く、精密な振動解析は困難である。本研究では、基準 座標を曲線座標に変換する事でモード結合を小さくし、VSCF を精密化する方法を開発した。

【方法】基準座標 Q_k は、分子振動のポテンシャル関数 $V(Q_1, ..., Q_f)$ の二次交差項がゼロである ように定義される。また、一般にVの原点における一階微分係数がゼロになるように定める。

$$V(Q_1, \dots, Q_f) = V_0 + \frac{1}{2} \sum_{k=1}^f V_{kk} Q_k^2 + \frac{1}{6} \sum_{k,l,m=1}^f V_{klm} Q_k Q_l Q_m + \dots$$
(1)

fは振動自由度数、 V_{kk} 及び V_{klm} はポテンシャル関数の原点における二階、三階微分係数である。非調和項 V_{klm} が振動モード間の結合を表す。振動の Schrödinger 方程式は振動角運動量を無視すると式(2)のように表され、VSCF 法ではその解を単モード関数の積、式(3)で近似する[1]。

$$\left(\frac{1}{2}\sum_{k,l=1}^{f}\frac{\partial}{i\partial Q_{k}}g^{kl}\frac{\partial}{i\partial Q_{l}}+V\right)\Phi_{vib}=E\Phi_{vib}$$
(2)
$$\Phi_{VSCF}=\prod_{k=1}^{f}\phi_{k(Q_{k})}$$
(3)

式(2)のg^{kl}は計量テンソルで、基準座標においては単位行列である。ポテンシャル関数の三次 交差項が存在する場合、VSCFの近似精度が悪くなる。そこで、本研究では式(4)で表される 曲線座標S_kを用いて振動モード間の結合が小さくなるような座標系を求めた。

$$Q_{k} = S_{k} + \frac{1}{2} \sum_{l,m=1}^{f} Z_{lm}^{k} S_{l} S_{m}, \qquad Z_{lm}^{k} = 0 \ (k \neq l \cap l \neq m \cap m \neq k)$$
(4)

この曲線座標系 S_k の計量テンソルは、 S_k の一次式で近似すると対角行列になる。計量テンソルが対角行列である座標系において、ポテンシャル関数が(5)式のように表されると変数分離可能である場合がある。座標系 S_k において、(5)式が一次で成立する為には(6)式が必要であると分かった。

$V = \sum_{k=1}^{f} g^{kk} V_{k(S_k)}$	(5)	$Z_{ll}^{k} = -Z_{lk}^{l} = \frac{V_{kll}}{V_{ll} - V_{kk}} \ (k \neq l)$	(6)	$Z_{kk}^{k} = \sum_{l \neq k}^{f} Z_{ll}^{k}$	(7)
--	-----	---	-----	---	-----

ここで、調和振動数 V_{kk} , V_{ll} が縮重、擬縮重している場合は $Z_{ll}^{k} = 0$ とする。係数 Z_{kk}^{k} は式(5)の成立とは関係しない。そこで式(7)のように定め、曲線座標系 S_{k} への変換のヤコビアンの一階微分係数をゼロにした。

【結果】図1にNH₃分子の座標変換前後のポテンシャル曲面(PES)及びVSCFとVCIの波動 関数を示した。ポテンシャル関数はCCSD(T)/aug-cc-pvtzで計算して多項式に最小二乗フィッ トし、Watsonの振動ハミルトニアン[2]を用いた。座標原点は傘反転振動の遷移状態とした。 NH 伸縮 S_1 と縮重伸縮モード S_3 は擬縮重しているとみなし、 $Z_{33}^1 = Z_{11}^3 = 0$ とした。VSCFの単 モード波動関数はDVR[3]を用いた。

図 1. (上)左から、基準座標における NH 伸縮 Q_1 と傘反転 Q_2 の面上の PES 及び伸縮の基音 振動の VSCF、VCI 波動関数。(下)左から、曲線座標における NH 伸縮 S_1 と傘反転 S_2 の面上 の PES 及び伸縮の基音振動の VSCF、VCI 波動関数。

NH₃分子は傘反転に二つの極小を持ち、基準座標系においてはこの二つの極小を結ぶ PES の 谷線は Q_1, Q_2 面上で大きく曲がっている。この為に NH 伸縮と傘反転に大きいモード結合があ り、VCI 波動関数は VSCF 波動関数に比べ谷線に沿って大きく歪む。一方、曲線座標におけ る傘反転の軸 S_2 は基準座標における PES の谷線に近く、二つの極小点がほとんど S_2 軸上に乗 る。この為 VCI 波動関数の歪みは小さくなり、VSCF でも良い近似となる。

NH3 分子の曲線座標系と基準座標系を用いた VSCF 及び VCI の振動数の計算結果を表1に示した。基準座標を用いると VSCF の傘反転の振動数は 50%以上の非常に大きい誤差を生じる。曲線座標を用いる事で著しく改善し、誤差は 10%以内に収まった。他のモードの基音振動数は VSCF レベルでも誤差およそ 3%以内であり、曲線座標系の有用性を示している。

		実験	基準座標		曲線座標			
			VSCF		VSCF		VCI	
トンネル分裂		0.793	0.020		0.468		0.567	
傘反転	v_2^+	932.43	1473.84	58.1%	997.98	7.03%	964.29	3.42%
	v ₂	968.12	1475.18	52.4%	1021.59	5.52%	990.34	2.29%
縮重変角	v_4^+	1626.28	1647.74	1.32%	1652.01	1.58%	1630.27	0.25%
	v_4^-	1627.37	1647.76	1.25%	1652.48	1.54%	1631.16	0.23%
伸縮	v_1^+	3336.08	3207.34	-3.86%	3388.39	1.57%	3339.72	0.11%
	v ₁	3337.11	3207.36	-3.89%	3388.86	1.55%	3340.96	0.12%
縮重伸縮	v_3^+	3443.68	3555.13	3.24%	3547.02	3.00%	3454.12	0.30%
	v ₃	3443.99	3555.15	3.23%	3547.49	3.01%	3457.01	0.38%

表 1. NH3分子の振動数(cm⁻¹)

【参考文献】

[1]Stuart Carter, Susan J. Culik, Joel M. Bowman, J. Chem. Phys. 107(24), 22 (1997)
[2]James K. G. Watson, Mol. Phys. 15(5), 479 (1968)

[3]D. O. Harris, G. G. Engerholm, and W. D. Gwinn, J. Chem. Phys. 43, 1515 (1965)