1P080

正方晶型 Fe 基ナノ合金の作製と磁気特性

(九大 I²CNER¹, 東北大院·工², JST CREST³)

大久保 和哉^{1,3}、山内 美穂^{1,3}、松浦 昌志^{2,3}、杉本 諭^{2,3}

Synthesis and Magnetic application of tetragonal-type Fe based nanoalloys

(WPI-I2CNER, Kyushu Univ.¹, School of Engineering, Tohoku Univ.², JST-CREST³) Kazuya Ohkubo^{1,3}, Miho Yamauchi^{1,3}, Masashi Matsuura^{2,3}, Satoshi Sugimoto^{2,3}

【序】Fe 窒化物である α "-Fe₁₆N₂ は体心正方晶型の構造をとり、構造の異方性に起因した 大きな保磁力を有していることから、永久磁石材料としての利用が期待されている⁽¹⁾。一方 で、Fe-Co 合金は金属の中で最も大きな飽和磁化を有している⁽²⁾。Fe-Co 合金を窒化して α "-Fe₁₆N₂ と同様の正方晶構造に変換することができれば、Fe-Co 合金の保磁力および飽和 磁化がさらに増大すると期待される。しかしながら、我々の知る限り α "-Fe₁₆N₂ 型構造の Fe-Co 合金が得られたという報告はない。そこで、本研究では NH₃ との反応により Fe-Co ナノ合金を窒化し、正方晶の Fe-Co 合金を作製するための反応条件の探索を行った。

【実験】Fe 酸化物と Co 塩の混合物を出発原料として Fe-Co ナノ合金を作製した。乳 棒で十分に混合した γ-Fe₂O₃ ナノ粒子 (2.7 mmol) と Co(NO₃)₂·6H₂O (0.3 mmol) の粉 末を管状炉にて H₂下 300 ℃で 3 時間熱処理して Fe₉₀Co₁₀ ナノ合金を得た。Fe₉₀Co₁₀

及び Fe と NH₃との反応を Bruker 社製 X (XRD) 測定装置 線回折 (D8 ADVANCE) に設置された Anton Paar 社 製反応チャンバー (XRK 900) 内で行い、 ナノ合金の構造変化の過程を粉末 XRD 測定により追跡した。試料を H₂ 雰囲気 下、300 ℃で還元した後、NH₃雰囲気下、 160 ℃で窒化を試みた。以降、還元後の 試料を Fe、Fe₉₀Co₁₀とし、NH₃との反応 後の試料を Fe-N、FegoCoto-N とする。 誘導結合プラズマ発光分析 (ICP-AES) 及び走査透過型電子顕微鏡 (STEM) 観 察により、ナノ粒子の元素組成や粒子径 の分析を行った。また振動試料型磁力計 (VSM) 測定によりナノ粒子の磁気特性 の評価を行った。

図 1. Fe および Fe₉₀Co₁₀ナノ粒子の XRD パターン

【結果·考察】図1にFe及びFegoCo10ナノ 粒子のNH₃との反応前後のXRDパターン を示す。反応前はFe、Fe₉₀Co₁₀共にbcc の単一相に帰属される回折パターンを 示した。NH₃との反応後にXRD測定を行 うと、α"-Fe₁₆N₂の場合と同様に42.5° 付近に新たなピークが出現した。リート ベルト解析によって、結晶相の組成を調 べると、Fe-Nでは83 wt%、Fe₉₀Co₁₀-N では57 wt%がFe₁₆N₂型構造に変化した ことがわかった。したがって、物理混合 により作製したFegoCo10ナノ合金は部分 的ではあるが、窒化されることが明らか となった。また、図2に示すように、 Fe₉₀Co₁₀-Nナノ粒子のEDS測定では、 FegoCotoナノ粒子にはみられないNか らの信号が観測された。したがって、 NH₃との反応によってFe-Co合金に窒 素が導入されたことが明らかとなった。 Fe及びFe₉₀Co₁₀ナノ粒子についてNH₃ との反応前後の磁化曲線と得られた磁 気特性の値を図3及び表1に示す。Fe及 びFe₉₀Co₁₀ナノ粒子の飽和磁化はNH₃ との反応後、約9割ほどに減少すること がわかった。一方、保磁力はFeで約2.2 倍、Fe₉₀Co₁₀ナノ粒子では約1.7倍に増 大した。この各試料における保磁力の 増加率は、ナノ粒子中の正方晶相の組 成と相関しており、FegoCo₁₀において 観測された保磁力の増大はFe₁₆N₂型 相の生成に起因していることが示唆 された。

図 2. Fe₉₀Co₁₀ナノ粒子の STEM 像(左)と EDS スペクトル(右)

図 3. Fe 及び Fe₉₀Co₁₀ナノ粒子の磁化曲線

表 1. Fe 】	うび Fe₀₀	Co ₁₀ ナノ	ノ粒子	の磁気特性
-----------	---------	---------------------	-----	-------

Name	M _s (emu/g)	H _c (Oe)
Fe ₉₀ Co ₁₀ -N	153.0	660
$Fe_{90}Co_{10}$	171.2	1100
Fe-N	137.9	860
Fe	153.9	1860

[1]S. Kikkawa, et al., *Materials Research Bulletin*, 2008, **43**, 3352[2]P. Weiss, *Trans. Faraday Soc.*, 1912, **8**, 149