物理吸着水素分子の非弾性トンネル分光に観られる 回転励起散乱のメカニズム

(京大院・理¹, 北大院・エ², 東大生研³)
O杉本 敏樹¹, 國貞 雄治², 福谷 克之³

Mechanism of rotational excitation observed in inelastic-electron-tunneling spectroscopy for physisorbed H₂

Toshiki Sugimoto¹, Yuji Kunisada² and Katsuyuki Fukutani³ ¹Department of Chemistry, Graduate School of .Science, Kyoto University, Japan ² Center for Advanced Research of Energy and Materials, Hokkaido University, Japan ³Institute of Industrial Science, The University of Tokyo, Japan

A quantum rotor of molecular H₂ retains its rotational motion in a physisorbed state [1-3]. Rotational and vibrational spectroscopy at the single molecule level has been recently succeeded for *para*-H₂ (*J*: $0\rightarrow 2$, Fig. 1) weakly physisorbed on surfaces [4-6]. In spite of the remarkable progress of inelastic-electron-tunneling (IET) spectroscopy technique with scanning-tunneling microscope (STM), mechanism of IET mediated by rotational excitation of H₂ remains to be clarified.

Figure 1. Rotational energy diagram of nuclear spin isomers of *para*-H₂ and *ortho*-H₂ [1-3].

Here we propose a new microscopic IET model based on the resonant coupling [7,8] through rotation-electron interactions between the STM-tip, physisorbed H₂, and a metal surface (Fig. 2). In this model, an electron with σ symmetry in the tip tunnels into the $2p\sigma_u$ or $1s\sigma_g$ state of H₂ through virtual negative (H₂⁻) or positive (H₂⁺) ion

formation, respectively. In this formalism, the anisotropic term of the electron transfer *t* and *U* induce the rotational excitation of H₂, which leads to a rotational selection rule of ΔJ =+2, ΔJ_z =0.

With this model, we analyzed the observed rotational spectrum in the IET spectra of H_2 physisorbed on Au(110) [4]. Potential anisotropy derived from the peak shift is in good agreement with our DFT calculation showing that rotational symmetry of H_2 in the nanocavity between the STM-tip and Au(110) is significantly broken.

Figure 2. (a) Schematic diagram of molecular-axis angle (θ) dependent transfer matrix elements *t* between STM-tip and H₂, and weak hybridization interaction *U* between H₂ and substrate through the $2p\sigma_u$ orbital of virtual H₂⁻ state for θ =0 and (b) θ = $\pi/2$ configuration.

- [1] T. Sugimoto and K. Fukutani, Nature Physics 7, 307 (2011);
- [2] K. Fukutani, and T. Sugimoto, Prog. Surf. Sci. 88, 279 (2013)
- [3] T. Sugimoto and K. Fukutani, Phys. Rev. Lett. 112, 146101 (2014).
- [4] S. Li et al., Phys. Rev. Lett. 111, 146102 (2013).
- [5] F. D. Natterer et al. Phys. Rev. Lett. 111, 175303 (2013).
- [6] F. D. Natterer et al. ACS Nano, 8, 7099 (2014).
- [7] B. N. J. Persson, Phys. Rev. Lett. 59. 339 (1987).
- [8] B. N. J. Persson, *Physica Scripta*. 38, 282 (1988).