Mechanism of rotational excitation observed in inelastic-electron-tunneling spectroscopy for physisorbed H$_2$

Toshiki Sugimoto1, Yuji Kunisada2 and Katsuyuki Fukutani3

1Department of Chemistry, Graduate School of Science, Kyoto University, Japan
2Center for Advanced Research of Energy and Materials, Hokkaido University, Japan
3Institute of Industrial Science, The University of Tokyo, Japan

A quantum rotor of molecular H$_2$ retains its rotational motion in a physisorbed state [1-3]. Rotational and vibrational spectroscopy at the single molecule level has been recently succeeded for para-H$_2$ (J: 0→2, Fig. 1) weakly physisorbed on surfaces [4-6]. In spite of the remarkable progress of inelastic-electron-tunneling (IET) spectroscopy technique with scanning-tunneling microscope (STM), mechanism of IET mediated by rotational excitation of H$_2$ remains to be clarified.

Here we propose a new microscopic IET model based on the resonant coupling [7,8] through rotation-electron interactions between the STM-tip, physisorbed H$_2$, and a metal surface (Fig. 2). In this model, an electron with σ symmetry in the tip tunnels into the 2p$_\sigma_u$ or 1s$_\sigma_g$ state of H$_2$ through virtual negative (H$_2^-$) or positive (H$_2^+$) ion
formation, respectively. In this formalism, the anisotropic term of the electron transfer t and U induce the rotational excitation of H_2, which leads to a rotational selection rule of $\Delta J=+2$, $\Delta J_z=0$.

With this model, we analyzed the observed rotational spectrum in the IET spectra of H_2 physisorbed on Au(110) [4]. Potential anisotropy derived from the peak shift is in good agreement with our DFT calculation showing that rotational symmetry of H_2 in the nanocavity between the STM-tip and Au(110) is significantly broken.

![Figure 2](image)

Figure 2. (a) Schematic diagram of molecular-axis angle (θ) dependent transfer matrix elements t between STM-tip and H_2, and weak hybridization interaction U between H_2 and substrate through the $2p\sigma_u$ orbital of virtual H_2^- state for $\theta=0$ and (b) $\theta=\pi/2$ configuration.