4P011

CD₂ラジカルのテラヘルツ分光

(東邦大理*, Univ. Lille 1**) 〇尾関博之*, G. Wlodarczak**, S. Bailleux**

Terahertz spectroscopy of deuterated methylene radical (Toho Univ.*, Univ. Lille 1**) OHiroyuki Ozeki*, Georges Wlodarczak**, and Stephane Bailleux**

【序】メチレン(CH₂)は基底電子状態が三重項の最も基本的なラジカルと して知られており、化学反応において重要な役割を示すだけでなく、分光学的 にも重要な分子である。しかしこの分子は非常に軽い水素化物であり、その純 回転スペクトルは従来のマイクロ波分光法がカバーするミリ波・サブミリ波帯 ではほとんど観測できない。このためこの分子の高分解能分光は、遠赤外レー ザーを用いた磁気共鳴法によってなされており、その周波数精度は必ずしも十 分高くなかった。我々はこれまでにメチレンラジカルおよびその一置換重水素 置換体(CHD)について、主要な回転線が集中するテラヘルツ帯で、Field Free 状態における純回転線の遷移周波数測定を行い、分子定数の精密決定を進めて きたが、^{[1]-[2]}本研究では二重水素置換体(CD₂)についてテラヘルツ分光を適 用した。

【実験】東邦大学およびリール第一大学に設置されている光源周波数変調型 吸収分光計を用いて、700 GHz から 1500 GHz の周波数範囲で純回転スペクト ルを測定した。光源はリール第一大学(700-1030 GHz)が周波数安定化した 逆進行波管によるもの、東邦大学(1100-1500 GHz)がマイクロ波シンセサイ ザー出力を多段構成の周波数逓倍器を通すことにより得たものである。テラへ

1.5

1

(q) (q)

UP Sweep w/o mag. field

mag. field

UP Sweep w.

混合気体をグロー放 電することにより生 成した。

図1 1.1 THz付近における CD2の純回転スペクトル(赤線)
 (*N_{KaKe}* = 5₁₄ - 5₀₅, *J* = 6 - 6)
 緑線は磁場印加時の Zeemann 分裂の様子を示す

Frequency (MHz)

【結果】これまでに 700 GHz から 1500 GHz の周波数範囲で $K_a = 1 \cdot 0$ の b 型遷移のみ 9 本の回転線のスペクトルを測定した。図1に示す通り大部分の回 転線は超微細構造を分離していない。測定したスペクトル線の遷移周波数決定 誤差は 70-200 kHz と見積もっている。ミリ波・サブミリ波帯ですでに測定済 みの 4 本の回転線の遷移周波数データ^[3]とともに以下の Hamiltonian を用いて解 析を行った。

$$H = H_{Rot} + H_{CD} + H_{Spin-Spin} + H_{Spin-Rot} + H_{HF}(D)$$

ここで $H_{Rot} + H_{CD}$ は6次の 遠心力効果による分子の 変形までを考慮した

表1 CD₂ラジカルの分子定数 (MHz)

変形までを考慮した	Constants	Present Work	FIR-LMR ^a
Watson \mathcal{O} A-reduced	А	1132826.442(110) ^b	1132820.6(18)
	В	126805.268(34)	126804.1(34)
Hamiltonian $\ \ H_{Spin-Spin}$ +	С	110760.7700(237)	110760.1(34)
	Δ_{K}	2.80044(124)	2.771(19)
H _{Spin-Rot} およびH _{HF} (D)は	$\Delta_{ m JK}$	-141.1343(101)	-149.16(24)
	Δ_{K}	16795.21 ^c	16795.21(48)
それぞれ、微細、超微細相	δ_{J}	0.65606(32)	0.669(7)
互作用を表す。	δ_{K}	83.4 ^c	83.4(15)
現在までに得られた CD ₂	Φ_{J}	-0.0002631(43)	0.0
ラジカルの分子定数を遠	$\Phi_{ m JK}$	-0.07739(47)	-0.057(5)
赤外レーザー磁気共鳴の	Φ_{KJ}	0.0	-7.294(57)
結果[4]とともに表1に示す。	$\Phi_{\rm K}$	588. ^c	588. ^c
解析の残差は 136 kHz とな	ε _{aa}	10.674(240)	8.5(11)
りにに測定周波数決定精	ε _{bb}	-76.190(48)	-78.3(11)
ティス 同転空粉なけど	ε _{cc}	-62.425(65)	-62.4(119)
皮でのる。回転止数をはし はしまえた悪なハス <u></u> ウン	α	7770.115(147)	7759.3(9)
のとする主要な分子正数	$\alpha_{\rm K}$	-40.827(168)	
の決定精度が 2-3 桁向上し	β	1222.897(149)	1216.6(19)
おり、例えば天文観測にお	$a_F(D)$	-2.903(141)	
いて重要な Low-N, $K_a = 1$	$T_{aa}(D)$	5.036(57)	
-0の遷移周波数は1MHz	$T_{bb}(D)$ - $T_{cc}(D)$	-0.076	
程度の推定誤差で予測が	rms	136 kHz	
可能である。しかし太研究	χ^2 /DOF	1.46	
でけ \mathbf{K} が 1 以 トの 進 たち	^a 文献[4]	^b 1 σ error ^c Fixed	

含む遷移を測定できていないため Δ_K や Φ_K といった遠心力歪定数の K 依存項は 固定したままである。これらを決定するためには、テラヘルツ帯の光源出力の 増大、あるいは CD_2 ラジカルの生成効率の向上により、分光計の実行感度とし て 1 ケタ程度の改善が必要である。

References

- [1] S. Brünken et al., J. Chem. Phys. 123, 164315 (2005).
- [2] H. Ozeki et al., Aston. Astrophys. 527, A64 (2011).
- [3] H. Ozeki and S. Saito, J. Chem. Phys. 104, 2167 (1996).
- [4] K. M. Evenson et al., J. Opt. Soc. Am. B 1, 15 (1984).