振動励起 $OH(X^2\Pi)$ の He および Ar による緩和過程の速度論的研究

(広島大院・理¹・原研²)

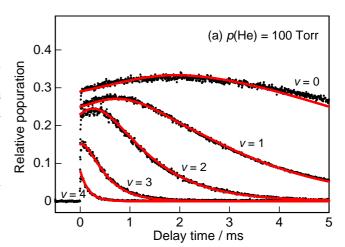
○門築ちひろ¹, 河野七瀬², 篠原美夜¹, 高口博志¹, 山﨑勝義¹

Kinetic Study on Vibrational Relaxation of $OH(X^2\Pi)$ by He and Ar

(Hiroshima Univ.¹, JAEA²)

OC. Kadochiku¹, N. Kohno², M. Shinohara¹, H. Kohguchi¹, and K. Yamasaki¹

1. はじめに


ヒドロキシラジカル(OH)は大気化学および燃焼化学分野で最も重要なラジカルの1つであり、炭化水素の酸化過程など多くの反応素過程が研究されている。振動励起 OH の希ガスによる緩和速度はきわめて遅く、報告例は上限値¹のみであるが、高圧の希ガスをバッファーガスとして用いる場合、緩和の影響を無視することができない。本研究では、振動励起 OH のHe および Ar による緩和速度定数を決定することを目的として実験を行った。

2. 実験

フローセル(298 K)中の O₃(0.01 ~ 0.1 mTorr)/H₂(180 mTorr)/He(70 ~ 130 Torr)または Ar(100 Torr)混合気に Nd³⁺:YAG レーザ第4倍 高調波(266 nm)を照射して O3を光解離し(O3 $\rightarrow O(^{1}D) + O_{2})$, 引き続く H_{2} との反応 $O(^{1}D) +$ $H_2 \rightarrow OH + H$ により振動励起 $OH(v = 0 \sim 4)$ を 生成した。OH(v)を $A^2\Sigma^+ - X^2\Pi$ 遷移により励起 し、レーザ誘起蛍光(LIF)をバンドパスフィル タ (UV-D35, 1 ~ 2枚)および光電子増倍管を 用いて検出した。振動準位 $v=0\sim2$ の検出に は Franck-Condon 因子の大きい $\Delta v = 0$ 遷移を, v = 3および4の検出には $A^2\Sigma^+(v' \ge 3)$ 状態での 前期解離を回避するために $\Delta v = -2$ 遷移を励 起した。0-0, 1-1, 2-2バンドの回転線 P₁(N= 2), および1-3, 2-4バンドの回転線 $Q_{21}(N=2)$ に検出レーザ波長を固定し, 光解離・検出レー ザの照射時間間隔を掃引して OH(v)の LIF 強 度経時変化を観測した(図1)。

3. 結果および考察

図1に見られる $OH(v \ge 1)$ の占有数の減衰は下位振動準位への緩和過程を、OH(v = 0)の占有数の増加は振動励起準位から v = 0への緩和過程を示している。また、OH(v = 1, 2)の減衰開始までの誘導時間は上位準位からの緩和

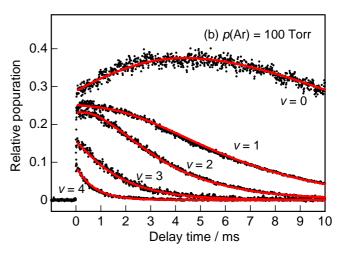


図1. $OH(v \le 4)$ の LIF 強度経時変化 黒点: 実測データ,赤点: フィッティング. t = 0

黒点:美測テータ, 赤点:フィッティンク.t=0 での相対強度は初期振動状態分布比(文献2)に合わせて描いてある. (a)と(b)の横軸の幅の違いに注意.

を表している。 $OH(v \le 4)$ の濃度経時変化を、1量子緩和過程 $(v+1 \rightarrow v)$ を仮定した Profile 積 分法(IPM)

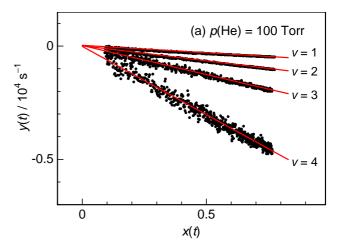
$$y(t) = -k_v x(t) + k_{v+1}$$

$$y(t) \equiv ([v] - [v]_0) / \int_0^t [v+1] dt', \qquad x(t) \equiv \int_0^t [v] dt' / \int_0^t [v+1] dt'$$

を用いて解析した。式中の[v]は振動準位 vの占有数, $[v]_0$ は振動準位 v の解離レーザ照 射直後の占有数である。y(t)対 x(t)プロット の勾配(図2)から準位vの1次減衰(=振動緩 和+拡散消失)速度k, を得た。IPM 解析で得 られた速度定数を用いたシミュレーション 計算は各振動準位の LIF 強度経時変化を完 壁に再現した(図 1,赤線)。各振動準位の拡 散速度が同じであると仮定すると、図1の 各振動準位の占有数の和

$$\sum_{v=0}^{4} [v] = \left(\sum_{v=0}^{4} [v]_{0} \right) e^{-k_{d}t}$$

により OH の総濃度の拡散消失による減衰 を表すことができる(図3)。図3の減衰から 決定したバッファーガスごとの拡散消失速 度 k_d (He: 240 s⁻¹, Ar: 110 s⁻¹)をk_v から差し 引き, OH(v ≤ 4)の振動緩和速度定数を決定 した(表 1)。


表 1. OH(v=1~4)の He および Ar による振動緩和速度定数

v	$OH + He^3$	OH + Ar	OH + He, Ar ¹
1	2.9×10^{-17}	7×10^{-17}	_
2	1.4×10^{-16}	1×10^{-16}	$< 1.0 \times 10^{-10}$
3	5.2×10^{-16}	2×10^{-16}	_
4	1.6×10^{-15}	4×10^{-16}	_

(単位: cm³ molecule⁻¹ s⁻¹)

【文献】

- 1. Rensberger et al. J. Chem. Phys. 1989, 90, 2174–2181.
- 2. Liu et al. Science 2000, 289, 1536-1538.
- 3. Kohno et al. J. Phys. Chem. A. 2013, 117, 3253–3259.

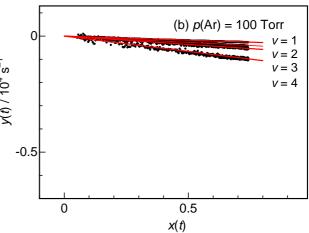


図 2. IPM 解析プロット $Int(I_n)$: 準位 v の時刻 $0 \sim t$ の profile 面積, (a) と(b)の横軸・縦軸のスケールは同一.

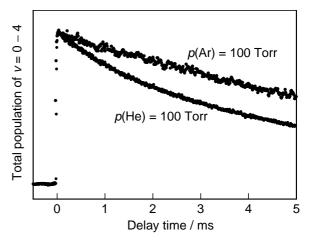


図 3. OH の総濃度の経時変化