3P098

電子相関エネルギーの外挿法: CBS(sDT) (早大先進理工¹, 太陽誘電株式会社², 早大理工研³, JST-CREST⁴, 京大 ESICB⁵) O大越昌樹¹, 渥美照夫², 中井浩巳^{1,3-5}

Calibrated Extrapolation of Correlation Energies to Complete Basis Set Limit: CBS(sDT) (Grad. Sch. of Adv. Sci. and Eng., Waseda Univ.¹; Taiyo Yuden Co., Ltd.²; RISE, Waseda Univ.³; JST-CREST⁴; ESICB, Kyoto Univ.⁵) OMasaki Okoshi¹, Teruo Atsumi², Hiromi Nakai^{1,3-5}

【緒言】

量子化学計算では、計算精度と計算コストのトレードオフのもと基底関数や電子相関法な どの計算方法がしばしば選択される。Helgaker ら¹は、Dunning の correlation-consistent (cc)基 底関数では基数 X に対して Hartree-Fock (HF)エネルギーが指数関数的に、電子相関エネルギ ーが X^3 で、それぞれ完全基底関数(CBS)極限に収束することを見出した。この関係を用いる と、比較的低い計算コストで高い計算精度が達成されるため、モデルケミストリーの手法と して利用されている。その一方で、電子相関エネルギーの X = 2の結果は、X = 3 - 6による漸 近曲線から大きく外れ、外挿に用いるには不適切であることも知られている。これに対し、 パラメータの導入などにより DZ (X = 2)及び TZ (X = 3)レベルによる外挿(CBS(DT))を改善す る試みがなされてきた^{2,3}。本研究では、新たに 2 種類の外挿法(CBS(sDT), CBS(SC-DT))を提 案し、その有効性を数値的に確認した。

【理論】

(I) 従来法 Helgaker らは X^3 に比例した電子相関エネルギーの外挿を提案した。

$$E[X] = E_{CBS}^{HKKN}[X, X+n] + b[X, X+n]X^{-3}$$
(1)

$$E_{\rm CBS}^{\rm HKKN}[X, X+n] = \frac{\left(X+n\right)^3 E[X+n] - X^3 E[X]}{\left(X+n\right)^3 - X^3}$$
(2)

ここで、E[X]はXに対する電子相関エネルギー、 E_{CBS} は CBS 極限における電子相関エネルギーの推定値、bは未知変数である。式(1), (2)は2つの独立な(X, E(X))の組によって解析的に求まる。CBS 外挿の高精度化のために、Huh と Lee²及び Bakowies³により、それぞれ式(3)及び (4)が提案された。

$$E_{\rm CBS}^{\rm HL}[X, X+n] = \frac{\left(X+n+\gamma\right)^{3} E[X+n] - \left(X+\gamma\right)^{3} E[X]}{\left(X+n+\gamma\right)^{3} - \left(X+\gamma\right)^{3}}$$
(3)

$$E_{\rm CBS}^{\rm B}[X, X+n] = \frac{(X+n)^{\beta} E[X+n] - X^{\beta} E[X]}{(X+n)^{\beta} - X^{\beta}}$$
(4)

ここで、分子群に対する数値検証から、X = 2, n = 1において式(3)中の γ は、MP2 と CCSD(T) に対してそれぞれ 1 及び 1/2、また式(4)中の β は MP2 と CCSD に対して、それぞれ 2.24 及び 2.49 と決定されている。

(II) CBS(sDT) CBS(sDT)では、DZ における基数 X = 2 をスケールすることにより CBS 極限の見積りを補正する。

$$E_{\rm CBS}^{\rm sDT} = \frac{\left(X+1\right)^3 E[X+1] - \left(\overline{s}X\right)^3 E[X]}{\left(X+1\right)^3 - \left(\overline{s}X\right)^3}\Big|_{X=2}$$
(5)

ここで、スケール因子sは予め適当な分子群に対して次式から決定したsの平均値とする。

$$E_{\rm CBS}^{\rm HKKN}[3,4] = \frac{\left(X+1\right)^3 E[X+1] - \left(sX\right)^3 E[X]}{\left(X+1\right)^3 - \left(sX\right)^3}$$
(6)

<u>(III) CBS(SC-DT)</u> CBS(SC-DT)では、係数 b を最適化することにより CBS 極限の見積りを補 正する。

$$E_{\rm CBS}^{\rm SC-DT} = E[X] - b^{\rm SC-DT} X^{-3} \Big|_{X=3}$$
(7)

係数 b は系に大きく依存するが、予備検討より次の線形の関係が成り立つことを見出した。 $b[3,4] = \alpha b[2,3] + \delta$ (8)

ここで、 α と δ は分子種によらないパラメータである。任意の系に対しては、適当な分子群に対して最適化されたパラメータ α_{opt} と δ_{opt} を用いて b^{SC-DT} を決定する。

$$b^{\text{SC-DT}} = \alpha_{\text{opt}} b[2,3] + \delta_{\text{opt}}$$

【数値検証】CBS(sDT)で用いるパ ラメータ **s** 及び CBS(SC-DT)で用い る α_{opt} , δ_{opt} を、Gaussian 3X セットに 含まれる 223 分子を用いて、 cc-pVXZ 基底関数系に対して決定 した。CCSD(T)に対しては、このう ち 148 分子を用いた。Table 1 に 2s の平均値 $2\overline{s}$ と標準偏差 σ を示す。 いずれの場合にも、25>2.0となっ た。これは*X*=2における相関エネ ルギーの過大評価を意味する。また、 σは最大で 0.051 であった。Table 2 に α_{opt} 、 δ_{opt} 及び、最小自乗フィッテ ィングの決定係数(R²値)を示す。い ずれの場合にも、R² ≥ 0.987 の良好 な相関が得られた。

Fig. 1 に水分子の MP2 相関エネ ルギーにおける、各外挿法の振舞い を示す。実線、破線、点線は、それ ぞれ各方法論による外挿曲線、最小 自乗フィッティングによって最適 化された *E*^{HKKN}_{CBS} [3-6]、*E*^{HKKN}_{CBS} [2,3]に 対応する外挿曲線である。

各方法論のパフォーマンスを Gaussian 3X セットに対して検証し た (Table 3)。 CBS(sDT) 及 び CBS(SC-DT)において、CBS(3, 4)か らの平均絶対偏差(MAD)が著しく 減少した。特に CBS(SC-DT)ではい ずれの電子相関法に対しても、最小 の MAD を与えた。 Table 1. Average values and standard deviations of 2s for CBS(sDT).

	MP2	CCSD	CCSD(T)
$2\overline{s}$	2.174	2.121	2.115
σ	0.024	0.045	0.051

Table 2. Fitting parameters, α_{opt} and δ_{opt} (kJ/mol), and coefficients of determination, R^2 , for CBS(SC-DT).

	MP2	CCSD	CCSD(T)
$lpha_{ m opt}$	1.502	1.426	1.443
$\delta_{ m opt}$	-152.0	-376.0	-386.5
R^2	0.993	0.987	0.990

Figure 1. Asymptotic behaviors of MP2 correlation energies of H_2O in CBS methods.

Table 3. MADs (kJ/mol) from CBS(3, 4).

	HKKN	HL	Bakowies	CBS(sDT)	CBS(SC-DT)
MP2	73.8	42.1	21.8	7.7	7.5
CCSD	49.9	149.6	11.6	11.1	10.5
CCSD(T)	41.8	126.3	10.1	10.8	8.5

[1] T. Helgaker, W. Klopper, H. Koch, J. Noga, *JCP* **106**, 9639 (1997). [2] S.B. Huh, J.S. Lee, *JCP* **118**, 3035 (2003). [3] D. Bakowies, *JCP* **127**, 084105 (2007). [4] L.A. Curtiss, P.C. Redfern, K. Raghavachari, J.A. Pople, *JCP* **114**, 108 (2001).

(9)