アルキルフェロセン・F_nTCNQ 塩の結晶構造と磁気的性質

(山口東理大工¹、神戸大院理²、東邦大理³、神戸大研究基盤セ⁴、神戸大分子フォトセ⁵) 〇舟浴佑典^{1,2}、持田智行²、赤坂隆拓^{2,3}、櫻井敬博⁴、太田仁⁵、西尾豊³

Crystal structures and magnetic properties of alkylferrocenium salts with F_nTCNQ

(Tokyo Univ. Sci., Yamaguchi¹, Kobe Univ.², Toho Univ.³) OYusuke Funasako^{1,2}, Tomoyuki Mochida², Takahiro Akasaka^{2,3}, Takahiro Sakurai², Hitoshi Ohta², Yutaka Nishio³

【序】メタロセン系電荷移動塩は、磁性や伝導性といった特徴的な電子物性を示すことから、 これまで広く研究がなされてきた。私たちはこれまで、フェロセンやビフェロセン誘導体と F_nTCNQ からなる電荷移動塩を合成し、その結晶構造や磁気物性について検討してきた¹⁾。こ れらの塩では、フッ素原子の数や置換位置によって D/A 比や結晶構造が変化するため、結晶 工学、磁気物性制御の観点から興味深い。本研究では、(C₅Me₅)₂Fe および(C₅Me₄H)₂Fe に対し て 4 種類の F_nTCNQ 誘導体 (F₁TCNQ, 2,5-F₂TCNQ, 2,3-F₂TCNQ, 2,6-F₂TCNQ)を組み合わせた 塩 (Fig. 1b, 1–7)を合成し、結晶構造および磁気物性のフッ素置換依存性について詳細に検討 した²⁾。

Fig. 1. (a) 本研究で用いた F_nTCNQ の構造式, (b) 電荷移動塩の合成スキームおよび組成式.

【結果と考察】

1. 結晶構造

電荷移動塩 1、2 は、フェロセン誘導体と F_nTCNQ のクロロホルム溶液を徐々に拡散させる ことで合成した。3–7 は、原料のアセトニトリル溶液にジエチルエーテルの蒸気を拡散させ ることで合成した。X 線構造解析の結果、1 と 2 は、フェロセン誘導体と 2,5-F₂TCNQ が一次 元に交互積層した[D]⁺[A]⁻[D]⁺[A]⁻型の構造をとっていることが明らかとなった (Fig. 2a)。一 方、3–7 では、 F_nTCNQ 分子が極性を打ち消すように二量体を形成し、[D]⁺[A₂]^{2–}[D]⁺型の構造 をとっていた (Fig. 2b)。このように、アクセプター分子の極性と集合形態の間に相関が見ら れた。これらの塩はそれぞれ、対応する TCNQ 塩[(C_5Me_4R)₂Fe][TCNQ] (R = H, Me; 1-D phase) および[(C_5Me_5)₂Fe][TCNQ] (Dimeric phase)と同形であった。フッ素原子の有無による単位格子 の体積変化は 0.5%以下であり、置換基効果は小さいといえる。一方で、分子間距離には顕著 な差が見られた。1 および 2 では、F₂TCNQ が積層軸とは垂直に-CH…NC-型の水素結合的な 相互作用を形成しており (Fig. 2c)、同形の TCNQ 塩に比べてアクセプター間距離の短縮が認 められた。

Fig. 2. (a) 1 および(b) 3 のパッキング図, (c) 1 における F₂TCNQ の配列.

2. 磁気物性

磁気物性に対するフッ素置換の影響を調べるため、1 および2について磁気測定を行った。 同形の TCNQ 塩である[(C₅Me₅)₂Fe][TCNQ] (1-D phase)は低温でメタ磁性を示すが、1 でも同様 の挙動が見られた。Fig. 3 に 1 の磁化率の温度依存性を示した。室温における χT 値は 1.14 emu K mol⁻¹であり、これは[(C₅Me₅)₂Fe]⁺ (~0.7 emu K mol⁻¹)と F₂TCNQ⁻ (0.375 emu K mol⁻¹)の寄与

と一致する。50 K 以下では、 χT 値は冷却と ともに増加し、3.9 K で反強磁性転移を示した。 磁気転移は比熱測定でも確認された。2 K に おける磁化曲線 (Fig. 3, inset)から、臨界磁場 は 0.99 T と求まった。同形の TCNQ 塩 ($T_N =$ 2.1 K, H_c (2 K) = 0.13 T)に比べて、より強い反 強磁性的相互作用がカラム間に働いている と考えられる。これは結晶構造とも矛盾しな い。2 も強磁性的な相互作用 (θ =1.1 K)を示 したが、2 K までの温度範囲では磁気転移は 認められなかった。

Fig. 3.1 の磁化率の温度依存性と磁化曲線 (2 K).

【文献】

- (a) T. Mochida *et al.*, Cryst. Growth Des. 2013, 13, 4460; (b) T. Mochida, *et al.*, Cryst. Growth Des. 2014, 14, 1459.
- 2) Y. Funasako et al., Inorg. Chim. Acta 2014, 419, 105.