CH_3O_2 ラジカルと $I(^2P_{3/2})$ の反応に関する研究

(東京学芸大学¹, 広島市立大学院・情報²) ○松田 晶平¹, 中野 幸夫¹, 石渡 孝²

Kinetic study of the reaction of CH₃O₂ radical with I(²P_{3/2})

(Tokyo Gakugei Univ.¹, Hiroshima City Univ.²) oShohei Matsuda¹, Yukio Nakano¹, Takashi Ishiwata²

【序論】ヨウ化メチル CH_3I は藻類により海中で生成され、続けて海面から大気へ放出されるため、海洋から大気中へのヨウ素キャリヤーとなる。大気中において CH_3I は太陽光により光分解され、メチルラジカル CH_3 とヨウ素原子 $I(^2P_{3/2})$ を生成する。 CH_3 は大気中の豊富な酸素分子 O_2 と反応し、ただちにメチルペルオキシラジカル CH_3O_2 が生成される。しかし、生成された CH_3O_2 と $I(^2P_{3/2})$ の反応の反応速度定数は正確に決定されていない。また、昼間大気の未知なる I_2 の発生源があることが近年示唆されており [1]、 CH_3O_2 と $I(^2P_{3/2})$ の反応は

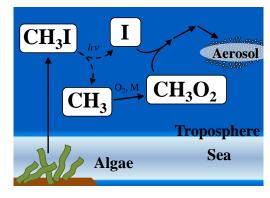


図1 大気中での CH₃I 光分解後の反応

ョウ素エアロゾルを生成する上で重要な IO ラジカルや I_2 を生成する可能性がある。したがって、 CH_3O_2 と $I(^2P_{3/2})$ の反応は海洋大気間のョウ素循環を理解する上でも重要な意味をもつ。そこで、本研究では時間分解型キャビティーリングダウン分光法(TR-CRDS)を用いて、 CH_3O_2 と $I(^2P_{3/2})$ の反応の反応速度定数について調査したので報告する。また、 CH_3O_2 と $I(^2P_{3/2})$ の反応の反応速度定数を決定する上で、 $I(^2P_{3/2})$ の再結合反応の反応速度定数の値が必要であるため、本研究ではその値の決定も行った。

【実験】本研究に用いた TR-CRDS の実験装置を図2に示した。

 $I(^2P_{3/2})$ の再結合反応の反応速度定数を決定する実験では、図 2 に示した反応領域に I_2/O_2 混合ガスを流入させた。そして、532 nm のパルスレーザー光を照射し I_2 を光分解した。その後に 532.1980 nm の色素レーザー光を照射することで、 I_2 の $B^3\Pi(0_u^+) \leftarrow X^1\Sigma_g^+$ (32-0) R_{55} 遷移での吸収を検出した。分解光の照射から検出光の照射までの遅延時間を変えて測定し、生成する I_2 濃度の時間変化を得た。

 CH_3O_2 と $I(^2P_{3/2})$ の反応の反応速度定数を調査

図2 時間分解型キャビティーリングダウン 分光法の実験装置

する実験では、図 2 に示した反応領域に CH_3I/O_2 混合ガスを流入させた。そして、266 nm のパルスレーザー光を照射し CH_3I を光分解した。その後に 532.1980 nm の色素レーザー光を照射することで、生成する I_2 の $B^3\Pi(O_u^+)$ $\leftarrow X^1\Sigma_g^+$ (32-0) R_{55} 遷移での吸収を検出した。分解光の照射から検出光の照射までの遅延時間を変えて測定し、生成する I_5 濃度の時間変化を得た。

【結果と考察】図 3 に $I(^2P_{3/2})$ の再結合反応の反応速度定数を決定する実験における測定結果の一例として O_2 希釈, 圧力 500 Torr, 温度 298 K における I_2 濃度の時間変化を点で示した。反応領域では次の反応により I_2 が生成される。

$$I(^{2}P_{3/2}) + I(^{2}P_{3/2}) + O_{2} \rightarrow I_{2} + O_{2}$$
 (1)
 $I(^{2}P_{3/2}) \rightarrow \text{diffusion}$ (2)

反応(1), (2)についての化学反応シミュレーションを用い、実験で得られた I_2 濃度の時間変化を再現するように $I(^2P_{3/2})$ の再結合反応の反応速度定数 k_{I+I} を最適化した。図 3 の実線が最適化の結果である。全圧 400, 700 Torr においても同様の測定・解析を行い、反応速度定数を決定した。各圧力に対する反応速度定数のプロットを図 4 に示した。このプロットの近似直線の傾きから $I(^2P_{3/2})$ の再結合反応の低圧極限速度定数を k_{I+I}^{low} = $(1.3 \pm 0.2) \times 10^{-32}$ cm⁶ molecule⁻² s⁻¹ と決定した。図 5 に CH_2O_2 と $I(^2P_{3/2})$ の反応の反応速度定数

図 5 に CH_3O_2 と $I(^2P_{3/2})$ の反応の反応速度定数 を調査する実験における測定結果の一例として O_2 希釈,圧力 50 Torr,温度 298 K における I_2 濃度の時間変化を点で示した。 I_2 の生成は反応開始から遅延時間をおいた吸収スペクトルの測定により確認した。反応領域では以下の反応により I_2 が生成される。

$$I(^{2}P_{3/2}) + I(^{2}P_{3/2}) + O_{2} \rightarrow I_{2} + O_{2}$$
 (3)

$$CH_3 + O_2 \rightarrow CH_3O_2 \tag{4}$$

$$CH_3O_2 + I(^2P_{3/2}) \to CH_3OOI$$
 (5)

$$CH_3OOI + I(^2P_{3/2}) \rightarrow CH_3O_2 + I_2$$
 (6)

反応(3)~(6)を考慮した化学反応シミュレーションを用い、実験で得られた I_2 濃度の時間変化を再現するように CH_3O_2 と $I(^2P_{3/2})$ の反応の反応速度定数 $k\{CH_3O_2+I(^2P_{3/2})\}$, $I(^2P_{3/2})$ の初期濃度 $[I(^2P_{3/2})]_0$ を最適化した。図 5 の実線が最適化の結果である。このようにして O_2 希釈,圧力 50 Torr,温度 298 K において $k\{CH_3O_2+I(^2P_{3/2})\}$ = $(2.4\pm0.2)\times10^{-11}$ cm³ molecule $^{-1}$ s $^{-1}$ と決定した。発表の際には、この反応速度定数の圧力依存性に関する実験・解析についての結果も報告する。

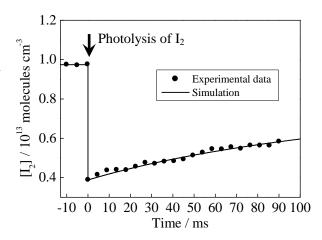


図3 O₂希釈, 500 Torr, 298 K において測定した I₅ 光分解後の I₅ 濃度の時間変化

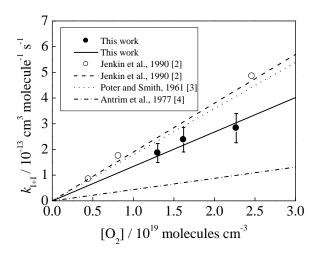


図 4 圧力に対する本研究で決定した反応速度 定数 $k_{\text{I+I}}$ とその報告値

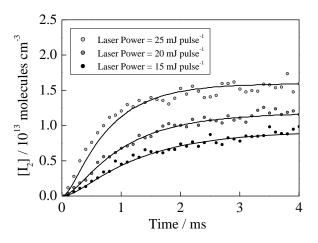


図 5 O_2 希釈, 50 Torr, 298 K において測定した CH_3I 光分解後の I_2 濃度の時間変化

【参考文献】

- [1] M. S. Lawler et al., Atmos. Chem. Phys. 14, 2669, (2014). [2] M. E. Jenkin et al., J. Phys. Chem. 94, 2927, (1990).
- [3] G. Porter and J. A. Smith, Proc. R. Soc. London A. 261, 28, (1961). [4] R. E. Antrim et al., Can. J. Chem. 55, 749, (1977).