2E17 Extended Second-Order Møller-Plesset Perturbation Theory

(MIT Chemistry) O Takashi Tsuchimochi and Troy Van Voorhis

Introduction

An efficient yet accurate treatment of both dynamical and static electron correlation effects has been elusive in electronic structure theory. Single reference methods such as second-order Møller-Plesset perturbation theory (MP2) and coupled-cluster singles and doubles have enjoyed their high accuracy in computed observables for non-degenerate systems, but it is well known that they cannot describe static correlation in degenerate systems. This failure is undoubtedly attributed by the reference wave function: Hartree-Fock (HF). A HF reference is qualitatively inadequate for (nearly-) degenerate systems where the true wave function is multi-determinantal in nature. Complete active space self-consistent field resolves this problem by treating all the configurations in an active space yielding a multi-reference state, and usually represents a good starting point when an appropriate active space is chosen. When the residual dynamical correlation is included through a perturbative correction (CASPT2) or configuration interaction (CI), it can achieve very accurate results both for the ground state and excited states. However, none of these are a black-box treatment, and their computational costs are very expensive. Especially, CASPT2 notoriously suffers from the intruder-state problem.

To tackle the aforementioned problem, spin-projected HF (PHF) has been recently revived by Scuseria as an alternative candidate for describing degenerate systems.[1] It handles the essential static correlation in a *black-box* manner. It was however shown to vastly underestimate dynamical correlation, which is necessary for quantitative accuracy. To capture the "residual" dynamical correlation in PHF, there has been extensive research along this line; among them are the non-orthogonal CI approach [2] and inclusion of DFT correlation.[3] In this talk, we will adopt MP2 to PHF in order to achieve a balanced description of both dynamical and static correlation effects. We will show that, with an appropriate perturbative correction, molecular potential energy curves and singlet-triplet splitting energies can be drastically improved over PHF.

Theory

In PHF, one uses a projected determinant as an ansatz, $\hat{P}|\Phi\rangle$, and finds a suitable set of orbitals, $\{\phi_i\}$, by minimizing the PHF energy:

$$E_{\rm PHF} = \frac{\langle \Phi | \hat{P}^{\dagger} \hat{H} \hat{P} | \Phi \rangle}{\langle \Phi | \hat{P}^{\dagger} \hat{P} | \Phi \rangle} = \frac{\langle \Phi | \hat{H} \hat{P} | \Phi \rangle}{\langle \Phi | \hat{P} | \Phi \rangle}.$$

Expanding the projected Schrödinger equation,

$$\widehat{H}\widehat{P}|\Psi\rangle = E\widehat{P}|\Psi\rangle,$$

around the PHF wave function, we find the second order energy of extended MP2 (EMP2),

$$E_{2} = \frac{1}{4} \sum_{ijab} t_{ij}^{ab} \frac{\langle \Phi | (\hat{H} - E_{\rm PHF}) \hat{P} | \Phi_{ij}^{ab} \rangle}{\langle \Phi | \hat{P} | \Phi \rangle}.$$

Each term could be straightforwardly evaluated by using generalized Wick's theorem but with an intractable computational scaling of $O(N^8)$. In the talk, we will a show how this can be scaled down to $O(N^5)$.

Results

We have implemented PHF and EMP2 in our in-house quantum chemistry program package. EMP2 is tested against full-CI for the dissociation curves of the H_2 and FH molecules (Figures) as well as the singlet-triplet splitting energies (Tables), showing a promising performance compared to the conventional methods. We will also report the results on excited states.

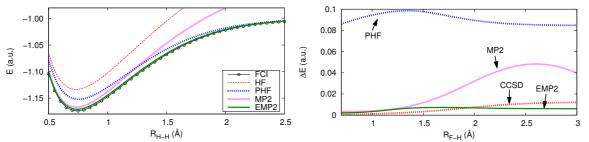


Figure: (Left) Potential energy curves of H₂ with cc-pV5Z. (Right) Energy errors from FCI for FH with 6-31G.

		PHF	EMP2	$PHF + E_c^{DFT}[3]$	MP2	CCSD	Expl.
С		23.1	30.1	31.1	44.8	35.7	29.0
Ο		39.2	46.3	41.0	66.6	55.9	45.3
Si		9.2	17.9	21.9	29.9	22.7	17.3
MA	Α Ε	6.7	0.9	3.7	16.6	7.6	
_							_
-		PHF	' EM	IP2 MP2	CCSD	FCI	_
-	NH	49.6	45	5.5 58.1	50.9	45.5	_
	OH^{-}	62.6	58	3.1 74.8	64.5	58.3	
	O_2	36.0	28	3.8 30.8	32.7	25.5	
	NF	47.9	40	0.2 50.7	48.5	40.9	
	MAE	6.4	1	.1 11.0	6.6		

Table: (*Top*) Singlet-triplet splitting energies for atoms with cc-pVTZ (kcal/mol). (*Bottom*) Diatomic molecules with 6-31G (kcal/mol).

Acknowledgments

We are grateful to Gus Scuseria for fruitful discussions. This work was supported by NSF (CHE-1058219).

[1] C. A. Jiménez-Hoyoz, T. M. Henderson, T. Tsuchimochi, and G. E. Scuseria, J. Chem. Phys. 136, 164109 (2012).

[2] R. Rodríguez-Guzmán, C. A. Jiménez-Hoyoz, R. Schutski, and G. E. Scuseria, Phys. Rev. B 87, 235129 (2013).

[3] A. J. Garza, C. A. Jiménez-Hoyoz, and G. E. Scuseria, *J. Chem. Phys.* **138**, 134102 (2013); A. J. Garza, C. A. Jiménez-Hoyos, and G. E. Scuseria, *J. Chem. Phys.* **140**, 244102 (2014).