## 光触媒に担持した助触媒への電子移動と正孔移動

(豊田工大<sup>1</sup>・JST さきがけ<sup>2</sup>・東大<sup>3</sup>) 〇山方 啓<sup>1,2</sup>・久保田純<sup>3</sup>・堂免一成<sup>3</sup>

## Electron- and hole-transfer to the cocatalysts on photocatalysts

(Toyota Tech. Inst.,<sup>1</sup> JST/PRESTO,<sup>2</sup> Univ. Tokyo<sup>3</sup>) Akira Yamakata,<sup>1,2</sup> Jun Kubota,<sup>3</sup> Kazunari Domen<sup>3</sup>

【序】エネルギー問題や環境問題を解決するために太陽光を用いて水を分解して水素を製造 できる光触媒が注目されている。この光触媒の活性を向上させるのに有効な方法の一つは助 触媒を担持することである。Pt や NiO は水素発生を促進し、IrO<sub>2</sub>や CoO<sub>x</sub> は酸素発生を促進 することが知られている。これらの助触媒はそれぞれ光励起電子と正孔を捕捉し、水素発生 と酸素発生の過電圧を下げる役割をすると考えられている。しかし、助触媒を担持した際の 光励起キャリアーの動きはまだよく分かっていない。そこで、本研究では光励起電子や正孔 の動きを調べることができる時間分解分光測定 [1-3] をもちいて、触媒担体から助触媒への 電荷移動過程を調べた。ここでは、可視光を用いて約 30%の量子効率で水を酸化できる LaTiO<sub>2</sub>N [4]に Pt や CoO<sub>x</sub> を担持して、光励起キャリアーの減衰過程を調べた。

【実験】LaTiO<sub>2</sub>N は La<sub>2</sub>Ti<sub>2</sub>O<sub>7</sub>を NH<sub>3</sub>気流下、1223 K で 15 h 加熱することで調製した。また、 助触媒の Pt と CoO<sub>x</sub> はそれぞれ H<sub>2</sub>PtCl<sub>6</sub> と Co(NO<sub>3</sub>)<sub>2</sub>を含浸法で担持させた後に、還元・酸化 処理を行うことで調製した。時間分解分光測定は LaTiO<sub>2</sub>N に 355 nm のレーザーパルス (6 ns, 0.1 Hz)を照射し、光励起電子や正孔による可視域から赤外域(25000~1000 cm<sup>-1</sup>, 400~10000 nm)に及ぶ過渡吸収を自作の装置 [1-3] を用いて測定した。また、フェムト秒時間分解装置 を用いて電子移動・正孔移動の初期過程も観察した。

【結果と考察】何も担持しない LaTiO<sub>2</sub>N に 355 nm の レーザーパルスを照射すると、図 1A に示すように 17000 cm<sup>-1</sup>と 6000 cm<sup>-1</sup>にブロードな過渡吸収が観測 された。これらはそれぞれ正孔とトラップ電子に帰属 される。この触媒に水素発生助触媒の Pt と酸素発生助 触媒の CoO<sub>x</sub>を担持して測定したスペクトルが図 1B と C である。Pt を担持すると、正孔の数がわずかに増加 しトラップ電子の数がわずかに減少することがわかっ た。一方、CoO<sub>x</sub>を担持すると、正孔の数が著しく減り、 トラップ電子の数は著しく増加することが分かった。

次に、光励起電子と正孔の減衰過程を詳細に調べた 結果を図2と3に示す。自由電子の動きは2000 cm<sup>-1</sup>の 吸収変化から追跡した。その結果、Ptを0.5wt%担持す ると、正孔(17000 cm<sup>-1</sup>)の減衰がわずかに遅くなるが、 担持量を増やすとわずかに減少する傾向が観察された。 また、自由電子の減衰速度はPtを担持することで著し



図 1. LaTiO<sub>2</sub>N のバンドギャップを励起 して測定した過渡吸収スペクトル

く加速されることが分かった。この結果は、光励起電 子が LaTiO<sub>2</sub>N から Pt に移動し、再結合が抑制される ことを示している。

次に、CoO<sub>x</sub>を担持して調べた結果を図 3 に示す。 CoO<sub>x</sub>を担持すると、正孔の減衰が促進され、電子の寿 命が著しく長くなることが分かった。これは、正孔が CoO<sub>x</sub>に捕捉されることで電子と正孔が空間的に分離 され、再結合が抑制されたことを示している。ここで 図 2C のスペクトルを見ると、CoO<sub>x</sub>の担持によって、 13000 cm<sup>-1</sup>に新しいピークが出現することがわかる。 Co が二価から三価に酸化されると、この付近の吸収が 増加することが分かっている。したがって、スペクト ル形状の変化からも CoO<sub>x</sub>に正孔が移動することが確 認できた。

次に、PtやCoOxへの電子移動と正孔移動の初期過 程をフェムト秒時間分解分光装置を用いて調べた(図 4)。Pt を 0.5 ~ 2wt% 担持しても、正孔と電子の減衰 速度は0~1000 ps においていずれも変化しないことが わかった。この結果は、図2で明らかにしたように、 Pt への電子移動速度は非常に遅いことを支持してい る。一方、CoOxを担持すると、0 ps における電子と 正孔の生成量は同じであるが、数ピコ秒以内に正孔の 減衰速度が速くなり、電子の減衰速度は逆に遅くなる ことがわかった。これらの結果は、CoOx への正孔移 動は数ピコ秒以内に起こっていることを示している。 LaTiO<sub>2</sub>NにPtを担持しても水素生成活性はそれほど 向上しないが CoOx を担持すると酸素生成活性は著し く向上する。助触媒への電子移動・正孔移動の速さと 効率が定常反応活性と良い相関があることがわかった。 References

[1] A. Yamakata, T. Ishibashi, H. Onishi, J. Phys. Chem. B 105, 7258 (2001).

[2] A. Yamakata, M. Yoshida, J. Kubota, M. Osawa, K. Domen, *J. Am. Chem. Soc.* 133, 11351 (2011).

[3] A. Yamakata, E. Soeta, T. Ishiyama, M. Osawa, A. Morita, *J. Am. Chem. Soc.* 135, 15033 (2013).

[4]F. Zhang, A. Yamakata, K. Maeda, Y. Moriya, T. Takata, J. Kubota, K. Teshima, S. Oishi, K. Domen, *J. Am. Chem. Soc.* 134, 8348 (2012).



図 2. Pt を担持した LaTiO<sub>2</sub>N の正孔と電子 の減衰過程



図 3. CoO<sub>x</sub>を担持した LaTiO<sub>2</sub>N の正孔と電 子の減衰過程



図 4. Pt あるいは CoO<sub>x</sub>を担持した LaTiO<sub>2</sub>N のピコ秒領域における正孔と電子の減衰過程