1P015

気相クラスター環境における O₂/SO₂系の新規スーパーオキシド反応

(東大院総合) 〇中西隆造, 永田 敬

Novel superoxide reactions of O₂/SO₂ system in gas-phase clusters

(Univ. of Tokyo) ORyuzo Nakanishi and Takashi Nagata

【序】スーパーオキシドイオン O_2^- と SO_2 が関与する 気相反応については大気イオン化学の観点から多く の研究が行われてきた.孤立した O_2^- と SO_2 の反応で は,電子移動

$$O_2^- + SO_2 \rightarrow O_2 + SO_2^- \qquad (1)$$

が起こるが、クラスタリングによってO2が安定化されると電子移動反応が抑制され、会合反応

$$O_2^{-}M + SO_2 \rightarrow SO_4^{-} + M$$
 (2)

図 1. peroxy 型 SO₄ と sulfate 型 SO₄

が進行する[1]. SO₄⁻に関して,図1に示す2つの構造異性体の存在が知られている.我々は光 電子分光法を用いて,peroxy型SO₄⁻がO₂⁻(H₂O)_n + SO₂反応やO₂/SO₂クラスターへの電子付着 によって生成することを明らかにした[2]. O₂⁻(H₂O)_n + SO₂反応に関する最近の理論計算[3] も生成物はperoxy型であると予測しており,我々の実験結果を支持する結果となっている. 一方,より安定な異性体であるsulfate型SO₄⁻がO₂/SO₂を出発物質として生成するかについて の実験的な知見は得られていない.これは,sulfate型SO₄⁻の電子束縛エネルギーが高く(>5 eV)[4],266 nmを脱離光に用いた以前の測定では確認できなかったことによる.気相におけ るsulfate型SO₄⁻の生成は,Na₂S₂O₈溶液のエレクトロスプレーイオン化[4]や,反応[SO₃⁻ + NO₂ → SO₄⁻ + NO] (O原子移動)[5]において確認されている.本研究では,O₂/SO₂を基剤とした 気相クラスター反応によって生成するSO₄⁻の光電子スペクトルを深紫外光によって測定し, sulfate型SO₄⁻生成の有無に関する情報を得ることを目的とした.

【実験】 SO_4 の生成には以下の2つの手法を用いた.(i) $[(O_2)_N(SO_2)_M + e^-]$: $O_2(10\%)/SO_2(1\%)/Ar$ 混合ガスの超音速ジェットを電子衝撃イオン化し、ジェット中の中性クラスター $(O_2)_N(SO_2)_M$ に低速電子を付着させた.(ii) $[O_2^-(H_2O)_n + SO_2]$: Arガスの超音速ジェットに $O_2 \ge H_2O$ をエン トレイメントし、電子衝撃イオン化によって $O_2^-(H_2O)_n$ を生成した.ジェット外からさらに SO_2 を導入して $O_2^-(H_2O)_n \ge SO_2$ の衝突反応を起こした.

生成したSO4⁻を飛行時間型質量分析計で質量選別した後,204 nmレーザー光で光電子スペクトルを測定した.204 nm光源にはH₂ガスに355 nmレーザー光を集光することによって得られる5次のアンチストークス光を用いた.

【結果と考察】図 2a に実験(i)で生成した SO₄の光電子スペクトルを示す. 得られたスペクトルには 3.8 eV 付近に極大を持つ幅広いバンド(band I)と 5.4 eV 付近に極大をもつシャープな バンド(band II)が観測された. 比較のために, これまでに報告されている peroxy型 SO₄のスペクトル[2]と sulfate 型 SO₄のスペクトル[4]を併せて図 2c に示した. band I は文献[2]に報告 された peroxy型 SO₄に由来する光電子バンドであり,今回の測定でバンド全体が観測された. band II は励起光を高エネルギー化したことによって新たに観測された光電子バンドであり,

sulfate 型 SO₄⁻の光電子バンド(図 2c)とよく一致して いる.したがって,band II は sulfate 型 SO₄⁻に由来 すると結論した.すなわち,O₂/SO₂ クラスターへ の電子付着によって peroxy 型 SO₄⁻だけでなく, sulfate 型 SO₄⁻も生成することが分かった.実験(ii) で生成する SO₄⁻の光電子スペクトルにも band I と II が観測された(図 2b)ことから,反応 O₂⁻(H₂O)_n + SO₂によっても peroxy 型 SO₄⁻と sulfate 型 SO₄⁻が生 成すると結論した.

文献[2]に報告された ab initio 計算によれば, peroxy型SO₄⁻はO₂⁻⁽² Π_g) + SO₂(¹A₁)解離限界に相関 しており,クラスター環境でO₂⁻がSOMO(2 π_g 軌道) に余剰電子を保持したままSO₂のS原子を求核攻撃 することで barrierless に生成するとされている.ま た,peroxy型の安定構造(図 1)のO₂S-O₂間距離は~2 Å[2,3]と典型的なS-O共有結合長(~1.5 Å)より特異 的に長い.このため、実験(i),(ii)いずれにおいても 反応の初期にはクラスター内でまず peroxy型SO₄⁻⁻ が生成したのちに,溶媒分子(O₂/SO₂あるいはH₂O) 蒸発のエネルギー緩和による peroxy型SO₄⁻⁻の安定 化と sulfate 型SO₄⁻⁻への異性化が競合していると考 えられる.

一方,最近の Vehkamäki らによる DFT 計算 (CAM-B3LYP)では peroxy 型 \rightarrow sulfate 型のエネル ギー障壁が 1 eV を超えており, peroxy 型からの異性 化による sulfate 型 SO₄ の生成は無視できると予測 されている.また,次のような O 原子交換に伴っ て peroxy \rightarrow sulfate 異性化する過程

 $O^*OSO_2^- + OSO \rightarrow SO_4^- + OSO^*$ (3)

図 2. SO₄の光電子スペクトル. (a)実験 (i), (b)実験(ii)で生成した SO₄のスペク トル. (c)peroxy型 SO₄の光電子バンド[2] と sulfate 型 SO₄の光電子バンド[4]

ではエネルギー障壁が 0.7 eV 程度に減少すると見積もられている[3]. しかし, ¹⁸O₂を用いた isotope-labeling による SO₄⁻生成実験を行ったところ, O 原子の交換(scrambling)は観測されな かった. このことから, 過程(3)のようなクラスター内でO原子交換を伴うメカニズムは sulfate 型 SO₄⁻の生成に寄与していないと結論した. このように, これまで量子化学計算によって予 想されてきた反応経路では,本研究で明らかとなった O₂/SO₂系からの sulfate 型 SO₄⁻の生成 は説明できない. 今後は,新たな遷移状態の探索などによる O₂/SO₂系のスーパーオキシド 反応メカニズムの再考が必要である.

[1] D.W. Fahey, H. Böhringer, F.C. Fehsenfeld, E.E Ferguson, J. Phys. Chem. 76 1799 (1982).

- [2] S. Zama, R. Nakanishi, M. Yamamoto, T. Nagata, J. Phys. Chem. A 114 5640 (2010).
- [3] N.T. Tsona, N. Bork, H. Vehkamäki, Phys, Chem. Chem. Phys. 16, 5987 (2014).
- [4] X-B. Wang, J.B. Nicholas, L-S. Wang, J. Phys. Chem. A 104 504 (2000).
- [5] F.C. Fehsenfeld, E.E. Ferguson, J. Chem. Phys. 61 3182 (1974).