κ-(ET)₂X 錯体の構造とスピンフラストレーション

 (名城大農¹,名大院理²,京大院理³,名大院工⁴,京大低物セ⁵)
○平松孝章¹,巴山洋美¹,吉田幸大¹,清水康弘²,前里光彦³,伊東裕⁴,岸田英夫⁴, 大塚晃弘⁵,矢持秀起⁵,齋藤軍治¹

The Relation between Crystal Structures and Spin Frustration in κ (ET)₂X Complexes

(Faculty of Agriculture, Meijo Univ.¹, Graduate School of Science, Nagoya Univ.², Graduate School of Science, Kyoto Univ.³, Graduate School of Engineering, Nagoya Univ.⁴, Center for Low Temperature and Materials Sciences, Kyoto Univ.⁵)

○Takaaki Hiramatsu¹, Hiromi Hayama¹, Yukihiro Yoshida¹, Yasuhiro Shimizu², Mitsuhiko Maesato³, Hiroshi Ito⁴, Hideo Kishida⁴, Akihiro Otsuka⁵,

Hideki Yamochi⁵, Gunzi Saito¹

三角格子などの構造に由来するスピン間のフラストレーションにより、絶対零度まで長距離磁気秩序を示さない量子スピン液体(QSL)状態を持つ物質の探索が行われ、いくつかの有力な候補物質が報告されている[1]。その中で最初に報告されたのが、

ET 分子

超伝導相に隣接した QSL 相を持つ Mott 絶縁体、 κ (ET)₂Cu₂(CN)₃ [2] である。この錯体で は ET は S = 1/2 のスピンを持つ二量体を、 $[Cu_2(CN)_3]$ ⁻は二次元的なポリアニオンを形成し ている。後者には空隙があり、各空隙に 1 組の ET 二量体の末端エチレン水素がかみ合って いる、いわゆる key-keyholeの関係をもつ (図 1 (a))。ET 二量体は三角格子を形成しており(図 1 (b))、スピンフラスト

レーションの目安とな る移動積分の異方性 t'/tは 1.09、また電子 相関の目安となる UW(Uは有効オンサ イトクーロン反発、Wはバンド幅)は 0.93 と 拡張 Hückel 近似で見 積もられており、どち らの値も 1 に近いこと から実際の物性とおお むね一致している。

同様の ET 配列を示

図 1. (a) **κ**(ET)₂Cu₂(CN)₃の結晶構造の a 軸投影図。黄色の長方形は 単位格子の bc 面 (anion layer area に相当)。(b) **κ**(ET)₂X 錯体にお ける移動積分と二量体間の距離の異方性(青丸は ET 二量体)。

す κ (ET)₂X 錯体は他に、銅ポリアニオン構造を持つ 10 K 級超伝導体 X = CuL₁L₂ [L₁=L₂=NCS; L₁=CN, L₂ = N(CN)₂; L₁ = N(CN)₂, L₂ = Cl (常圧では反強磁性体(AF)); L₁ = N(CN)₂, L₂ = Br]、孤立アニオンとの錯体である超伝導体 X = Ag(CN)₂•H₂O や I₃などが報告 されている。最近では、我々が t'lt が 0.9 を超える QSL 候補物質の開発を行い[3]、銀ポリア ニオン構造を持つ X = Ag₂(CN)₃ (QSL・圧力下で超伝導体)[4]、孤立アニオンとの錯体である X = B(CN)₄ (低温で spin-singlet)[5]や CF₃SO₃ (AF)[6]などについて報告している。今回は、 以上の κ (ET)₂X 錯体の構造 (key-keyhole 関係) と電子相関やスピンフラストレーションの 関係について報告する。

Key-keyhole 関係に基づけば、アニオン層に平行な単位格子の面積: anion layer area (X = $Cu_2(CN)_3$ については (図 1(a)を参照)の違いは ET 二量体間の距離に反映され、電子相関を 変調すると考えられることから、この anion layer area と UWとの関係を図 2(a) に示す。 アニオン層が平面的ではない孤立アニオン系 X = CF₃SO₃, B(CN)₄以外では、この二つのパラ メーターはほぼ線形関係にあり、相関があることが示された。

同様に、三角格子の二量体間の距離の比 (r/r')(図 1 (b)) とスピンフラストレーションの目 安となる t'/tの対応を図 2 (b)に示す。図 2a と同様に、X = CF₃SO₃, B(CN)₄以外ではおおむ ね線形関係であり、相関を示している。

以上の二つの図から、平面的なアニオン層を持つ κ (ET)₂X 錯体において構造が以下のよう な特徴をもつのであれば、これまでに得られた錯体 (X = Cu₂(CN)₃, Ag₂(CN)₃) と同様に超伝 導相に隣接した QSL 相を持つことが期待される。

モット絶縁体である必要性(*UW*> 0.89)から、anion layer area > 112 Å²であること
スピンフラスレーションが強い必要性(*t*'/*t* > 0.90)から、*r*/*r*' > 0.915 であること

図 2. κ (ET)₂X 錯体の (a) UW の anion layer area 依存性 (b) t'/t の r/r'依存性 (室温)。赤色の 点は QSL 候補物質。青色の線は目安である。

【参考文献】[1] L. Balents, *Nature* 2010, 464, 199., [2] Y. Shimizu *et al.*, *Phys. Rev. Lett.* 2003, 91, 107001., [3] G. Saito *et al.*, ICSM 2014, W3.4-2., [4] 平松ら, 分子科学討論会 2013, 1B05., [5] Y. Yoshida *et al.* submitted. [6] H. Ito *et al.*, ICSM 2014, Tu4.4-1.