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Heterodyne-detected vibrational sum-frequency generation (HD-VSFQ)
spectroscopy is a powerful tool to study the interfacial boundary between two
materials. Over the last years, we have employed HD-VSFG in a variety of
experiments to investigate the molecular properties at liquid surfaces exposed to
the air by measuring the complex second-order nonlinear susceptibility y® [1].
The imaginary part of the y® spectrum is directly comparable to the linear
absorption spectrum in the bulk. Furthermore, the sign of the imaginary y®
provides information about the up/down orientation of the interfacial molecules.
However, application of HD-VSFG to the buried solid/liquid interface over a wide
frequency range has not been achieved so far.

In a previous study, we measured the y® spectrum of silica/water interface

in the CH stretch region using the CH resonance as a phase reference [2]. A 150
nm thick gold film, evaporated on a part of the fused silica substrate was used as
an intermediate reference. The
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Figure 1: a) Schematic of the fluid cell. b) Schematic of the exchanged with a syringe,
VSFG setup. without opening the cell. To



obtain the correct phase of the complex y®, we used the nonresonant SFG signal
from the “buried” silica/air interface as a reference, i.e. focusing the w; and w,
beams at the lower surface of the silica substrate in the empty cell. To avoid the
effect of OH resonance due to adsorbed water, SFG spectra of silica/air were
measured in D20 saturated air. Therefore the silica/air signal is completely
nonresonant and real.

To confirm the validity of the use of silica/air interface as a reference, we used
perfluorohexane (C¢F14) as a sample. Since CeFi14 shows no absorption near the
OH stretch region, we can reasonably expect ¥ of the silica/C¢F14 interface is
nonresonant. The observed y® spectrum of CgFis was real and constant,
verifying the validity of the measurement.

As a model “buried” interface, we measured the silica/water interface. We
observed a positive imaginary y®, indicating an up-orientation of the water
molecules (figure 2). This is consistent with a partially negatively charged silica

surface.
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Figure 2: Complex )(gg spectrum of the silica/water interface. This spectrum was normalized by )(gg of
the silica/air interface, because it is a positive real constant in the present wavenumber range. The

sum-frequency w; + w,, visible w{, and IR w, lights were S-, S-, and P-polarized, respectively.
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