1C11

魔法数クラスター Al_{23} の新規構造モデル: 面共有双二十面体型構造 (東大院理 1 , 京大 ESICB 2) ○小安 喜一郎 1,2 , 佃 達哉 1,2

A new structure model for magic cluster Al_{23}^- : face-sharing bi-icosahedral motif (The Univ. of Tokyo¹, ESICB, Kyoto Univ.²) \bigcirc Kiichirou Koyasu^{1,2} and Tatsuya Tsukuda^{1,2}

【序】

金属クラスターでは、ジェリウム模型から予測される離散化した超原子軌道 (SAO: 1S, 1P, 1D, 2S, 1F,...) が形成される。これまで、一価金属である Na や Au、三価金属の Al クラスターにおいて、各 SAO の閉殻 (総価電子数 $N^*=8$, 18, 20, 40, 70,...) によって安定サイズの起源が説明されてきた。例えば気相実験において、 O_2 に対する Al_{13} および Al_{23} の相対反応速度定数は他のサイズと比較して非常に小さい[1]。この結果は、それぞれ $N^*=40$ と 70 の電子殻閉殻を満たし、特に前者は対称性の高い正二十面体 (I_h) 構造であることから、電子的にも幾何的にも安定であるためと説明されている。

一方,電子求引性のチオール配位子を用いて価電子数を制御し, $Au_{13}^{5+}(N^*=8)$ が化学的に合成されている。 Au_{13}^{5+} は電子殼閉殼, I_h 構造をもつ安定な超原子であることから, Au_{13}^{5+} をユニットとして I_h 構造の一部を共有する「超原子分子」が報告されている[2]。例えば, $[Au_{25}(SR)_5(PPh_3)_{10}Cl_2]^{2+}$ は I_h の頂点を共有した Au_{25} コア[3], $Au_{38}(SC_2H_4Ph)_{18}$ は I_h の面を共有した双二十面体 Au_{23} コア[4]をもつことが単結晶 X 線構造解析から決定され,後者については Au_{23} コアの軌道と F_2 の分子軌道の計算結果を比較して,超原子分子とみなせることが提唱されている[5]。

以上のような Au_{23} コアに対する超原子分子の取り扱いに着想を得て、本研究では魔法数クラスター Al_{23} が Al_{13} をユニットとする双二十面体構造をもつ可能性を、DFT 計算によって検討した。その結果、双二十面体構造の Al_{23} の分子軌道を、二十面体型 Al_{13} の SAO と比較することで、 Al_{23} が超原子分子とみなせることを見出した。

【計算方法】

本研究では、双二十面体型、および面心立方型構造の Al_{23} について、Gaussian09 プログラムを用い B3LYP/6-311++G**レベルで構造最適化を行った。振動数解析を行い、得ら

れた構造が安定であることを確認 した。また,構造最適化した双二 十面体 Al_{23} では Al_{13} ユニットが D_{3d} 対称性であったため, D_{3d} 対称 性の Al_{13} について SAO を計算し, Al_{23} の MO と比較して,超原子の 結合様式について検討した。

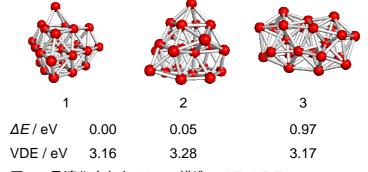


図 1 最適化された Al₂₃ の構造, ΔE, VDE.

【結果と考察】

異性体1-3について最適化された構造、 相対エネルギー(ΔE), 垂直脱離エネルギ ー(VDE)を図1に示す。異性体3を形成す るAl₁₃-ユニットはD_{3d}対称性であり、共有す る面の 3 つの平均 Al-Al 結合長(3.44 Å) は, Al₁₃-の平均 Al-Al 結合長(2.82 Å)と比 較して伸長していることがわかった。

また 1, 2 より 3 の方が約 1 eV 不安定で あるが、VDE はほぼ同じ値が得られた。従 って、気相中で3が生成していると考えても VDE の実験値(3.57 eV[6])を矛盾なく説 明できる。

図 2 にエネルギー準位図を示す。異性 体 1,2 は球対称に近い形状であり、どちら も電子構造は超原子に対して想定される分 実線は占有軌道,破線は非占有軌道を示す. 布と近い結果であった。一方、3のエネルギ

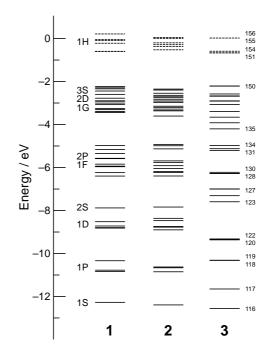


図 2 異性体 1-3 の SAO のエネルギー準位図.

一準位図は1,2とは異なり、電子構造が超原子とは異なることが示唆された。

そこで、 $Al_{13}^-(D_{3d})$ の SAO の形状に基づいて、 Al_{23}^- 内の二十面体どうしの結合様式を検 討した(図3)。低エネルギーの軌道では、 Al_{13} つ 1S、1P軌道から Σ 、 Π などの軌道が形成さ れる様子が観測された。一方, 高エネルギーの軌道は形状が複雑であったが, Al23⁻の 145, 146番軌道は Al₁₃の 1F 軌道(図 3, 82 および 83番 SAO)から, 142番軌道は Al₁₃の 2Pz

軌道(図3,84番SAO)から形成されるこ とがわかった。これらの結合性軌道は, 対応する反結合性軌道が占有されてお らず, 結合次数3に相当する。 開殻電子 構造の Al134+をユニットとして, 形式的な 結合スキームは、以下のように記述でき る。

 Al_{23}^{-} (70 e) = 2 × Al_{13}^{4+} (35 e) – 3 Al_{3+}^{3+} . すなわち双二十面体型 Al23-は, 開殼超 原子 Al₁₃4+がファセット(3 原子)を共有し て結合した超原子分子とみなせる。

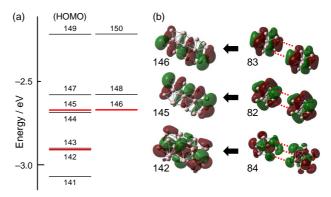


図 3 (a) Al_{23} (異性体 **3**) の SAO のエネルギー準位 図と(b) Al₁₃ の SAO の結合性相互作用.

【引用文献】

[1] Leuchtner, R. E. et al. J. Chem. Phys., 1989, 91, 2753. [2] Nishigaki, J. et al. Chem. Rec. in press (DOI: 10.1002/tcr.201402011). [3] Shichibu, Y. et al. J. Phys. Chem. C 2007, 111, 7845. [4] Qian, H. et al. J. Am. Chem. Soc. 2010, 132, 8280. [5] Cheng, L. et al. Nanoscale 2012, 5, 1475. [6] Akola, J. et al. Phys. Rev. B 2000, 62, 13216.