¹⁵NO₃ ラジカル *B* – *X* 遷移の高分解能レーザー分光

(神戸大院理¹、神戸大理²、神戸大分子フォト³、広島市大院情報⁴、総研大⁵) 〇多田 康平¹、寺元 加音²、松原 瞳²、笠原 俊二³、石渡 孝⁴、廣田 榮治⁵

High-resolution laser spectroscopy of the B - X transition of ¹⁵NO₃ radical

(Kobe University ^{1, 2, 3}, Hiroshima City University ⁴, The Graduate University for Advanced Studies ⁵) oK. Tada ¹, K. Teramoto ², H. Matsubara ², S. Kasahara ³, T. Ishiwata ⁴, and E. Hirota ⁵

【序】硝酸ラジカル (NO₃) は、電子基底状態 X^2A_2 から約 2 eV の範囲に 2 個の電子励起状態 A^2E "、 B^2E が存在する。これらの電子状態は特定の振動モードを介して相互作用が可能であ るため、NO₃ は多原子分子ラジカルの状態間相互作用解明のモデル系として、分光研究が盛 んに行われている。我々は、可視領域に存在する光学許容な $B^2E' - X^2A_2$ 遷移に注目し、回 転線まで分離した高分解能スペクトルの観測とその解析から、 B^2E 状態における相互作用の 解明を試みている[1]。本研究では、窒素を同位体置換した ¹⁵NO₃ について、B - X 遷移 0 - 0 バンドの高分解能レーザー分光を行ったので報告する。

【実験】光源には、Nd: YVO₄ レーザー (Coherent, Verdi-V10) 励起の単一モード波長可変色素 リングレーザー (Coherent, CR699-29、色素 DCM) を用いた。– 5°C において ¹⁵N₂O₅ 蒸気と He を混合し、パルスノズルから高真空チャンバー内に噴出した。パルスノズル直下に設置した ヒーターで混合気体を約 300°C まで加熱して、¹⁵N₂O₅の熱分解反応: ¹⁵N₂O₅ → ¹⁵NO₃ + ¹⁵NO₂ により、分子ジェット中に ¹⁵NO₃ を得た。その後、スキマーとスリットに通すことで、並進 方向の揃った分子線とした。分子線と色素レーザー光を直交させて気体分子の並進運動に起 因するドップラー幅を抑え、回転線まで分離された蛍光励起スペクトルを観測した。観測し た ¹⁵NO₃のスペクトルの絶対波数を 0.0001 cm⁻¹の精度で較正した。さらに、回転線の確実な 帰属のために、自作した電磁石を用いて最大 360 G までのゼーマン効果も観測した。

【結果と考察】15080-15103 cm⁻¹の領域について、回転線まで分離した高分解能蛍光励起ス ペクトルを観測した(図 1)。強度の大きな回転線が観測領域の高波数側に見出されるとともに、 バックグラウンドレベルに多数の小さな回転線も見出された。観測したスペクトル中に、約 0.0248 cm⁻¹の間隔をもつ強度の大きな回転線の組を多数見出した。この間隔は、 X^2A_2 '(v=0, k=0, N=1, J=0.5 and 1.5)準位のスピン回転分裂の大きさに一致する[2]。ここに、 X^2A_2 '状 態は Hund's case (b)で扱い、Jは全角運動量量子数、Nは電子スピンを除いた全角運動量量子 数 (N = J - S)、kはNの分子固定座標z軸への射影を表す。このような回転線の組の例とし て、15097.7 cm⁻¹付近に存在する回転線の組と、その磁場効果を図2に示す。外部磁場がない とき (図 2 最上段)、矢印 (\leftrightarrow)で示すように回転線の組が見出された。磁力線とレーザー偏 光が垂直な σ -pumpの条件で磁場効果を観測すると、回転線の組で低波数側のものは2本、高 波数側のものは3本に分裂した。このゼーマン分裂から、図2に示す回転線の組をいずれも

図 2.15097.7 cm⁻¹付近 (図 1 中①の位置)の回転線と磁場効果 (σ-pump)。 間隔 0.0248 cm⁻¹の回転線の組を矢印 (↔)で表す。 図 3.15094.2 cm⁻¹付近 (図 1 中②の位置)の回 転線と、その磁場効果 (σ-pump)。

²E'_{1/2} ← $X^2 A_2$ '遷移の ' $Q_0(0.5)$ 、' $P_0(1.5)$ と帰属した。(回転線は ^Δ ΔJ_k ·(J')と命名した。) 図3に、 15094.2 cm⁻¹付近に存在する強度の大きな回転線と、その磁場効果を示す。これらの回転線は 基底状態の combination difference から ' $P_0(2.5)$ と帰属された。さらに、図3の回転線は σ -pump で M 字型のゼーマン分裂を示し、このパターンは ' $P_0(2.5)$ という帰属を支持するものとなっ た。このように、基底状態の combination difference とゼーマン分裂の観測を併せて、回転線 を確実に帰属した。図 2、図 3 に示したように、同じ帰属の回転線が複数、密集して見出さ れた。これは周囲の振電状態が B^2 E' (v=0) 状態と相互作用することで、光学許容な B-X 遷 移から遷移強度を借りて現れたためと考えられる。摂動論によれば、相互作用する準位間の エネルギー差が大きいほど、相互作用の大きさは小さくなる。これを intensity borrowing にあ てはめると、無摂動での遷移エネルギーからエネルギー的に離れるほど、周囲の振電状態の 遷移強度は小さくなることを意味する。そこで、同じ帰属の回転線の強度で重み付け平均を とった遷移エネルギーが、deperturbation された遷移エネルギーであると仮定した。現在 k"=0 からの遷移だけでなく $|k'| \le 6$ からの遷移も帰属し、上述の仮定の下で回転解析を試みている。

【References】[1] 多田ら、第7回分子科学討論会、1A19 (2013)。[2] R. Fujimori, *et al.*, J. Mol. Spectrosc., 283, 10 (2013).