レーザー加工による金属マイクロ構造体の作製とその光学特性の究明

(早大院先進) 〇 平野祐樹, 井村考平

Laser fabrication and optical characterization of plasmonic nanostructures

(Waseda University) 🔿 Yuki Hirano, Kohei Imura

【序】サブ波長サイズの貴金属構造体は、プラズモン共鳴によりバルクとは異なる光学特性 を示すことから、光反応場や光電変換などへの応用が期待されている。プラズモンの特性は、 構造体のサイズや形状に依存し、これを簡便かつ自在に加工する技術が求められている。サ ブ波長構造体の作製法として、化学合成手法、電子線リソグラフィー(EBL)法、そしてこ れら両方を組み合わせる手法がある。化学合成法は、結晶性の高い欠陥の少ない構造体を作 製できるが、形状制御が容易でない。一方、EBL法は、形状制御が容易であるが、大型で高 価な装置が必要となる。レーザー加工法は、EBL法と比べて加工精度が劣るものの、比較的 小型な装置で柔軟な加工が可能である。本研究では、レーザー加工によりマイクロ構造体を 作製し、これをテンプレートとして化学合成した球形コロイド粒子を自己組織化して構造体 を作製する方法を構築した。また、作製した構造体の光学特性を顕微分光手法および電磁気 学シミュレーションにより究明した。

【実験】貴金属マイクロ構造体は、ガラス基板上に蒸着した金属膜に、連続発振レーザー光 を照射して作製した。高精度かつ柔軟な加工を実現するために、自作の光学顕微鏡を用い、 これにチタンサファイヤレーザー(波長 800 nm)を組み合わせて用いた。レーザー光のスポ ット径を数 µm 程度に絞り、レーザーの露光時間、光強度を調整して、金属薄膜上にマイク ロ構造体を作製した。また、レーザー加工を行う前後に基板を化学的に修飾することで、ガ ラス基板に金ナノ粒子が化学的に吸着できるようにした。基板の表面処理は、超音波洗浄処 理したガラス基板を 2wt.% poly (diallyl dimethyl ammonium chloride) (PDDA) 中で 30 秒間浸 漬後、純水ですすぎ、大気雰囲気下で乾燥した。基板上に金薄膜(35 nm)を蒸着し、10 mM 1-dodecanethiol / ethanol 溶液中で 20 秒間浸漬後、エタノールですすぎ、大気雰囲気下で乾燥 した。レーザー加工後の基板に 100 nm 金球形コロイド粒子を滴下し、ホットプレート(30℃) 上で乾燥することで、加工部に金ナノ粒子の集合構造を作製した。最後に、スコッチテープ を用いて金薄膜部位を剥離して金ナノ粒子の集合構造体を得た。

構造体の形状は、走査電子顕微鏡(SEM)および原子間力顕微鏡(AFM)を用いて評価した。また、光学特性は、顕微分光測定により評価した。

【結果と考察】図1(a)に、レーザー加工により金薄膜に作製したホール構造体の AFM 像 を示す。図中の明部と暗部は、それぞれ隆起部分とホール部分に相当する。AFM 像の解析か ら、隆起部分は高さ約150 nm、幅約200 nm、ホール部分は直径1.5 µm であることが明らか となった。ホール径は、光の回折限界から見積もられるレーザースポット径と同程度である ことから、光照射部分のみが加工されていると考えられる。ホール部分では、膜厚分高さが 低くなっており、ガラス基板がむき出しになっていると推測される。隆起部分の体積とホー ル内部の体積が概ね一致すること、図1(b)より照射光強度の閾値(赤破線)があり、構造 体の面積が照射光強度に比例すること などから,ホール構造体が金の溶融プロ セスを経て作製されたと推測される。同 様のレーザー加工を銀薄膜とアルミニ ウム薄膜に対して行い,加工面積が照射 光強度に比例することも明らかとした。

図2(a,b)に、作製したマイクロホー ル構造と球形金ナノ粒子集合体のSEM 像をそれぞれ示す。図2(a)から、球 形金ナノ粒子がホール構造の内部にほ ぼ選択的に集積していることがわかる。 ホール内部では、ガラス基板が剥きだし となり、基板表面のPDDAと球形金ナ ノ粒子間に静電引力が働くために化学 選択的にホール内に球形金ナノ粒子が 集積化したと推測される。集積構造体の 外径は、ホールの内径と概ね一致する。 ホール径の調整により、集合構造の外径 を制御できることが明らかとなってい る。

図3に、金ホール構造、金ホールー金 ナノ粒子集合構造、金ナノ粒子集合構造 の暗視野散乱スペクトルを示す。ここで、 散乱スペクトルは、ガラス基板上での散 乱強度をI₀、構造体での散乱光強度をI として、I/I₀より評価した。金ホール構 造、金ホールー金ナノ粒子集合構造の散 乱スペクトルは、波長 540 nm 近傍にピ ークを示す。これらのスペクトルは、波 長 650 nm 近傍で顕著な違いを示し、金 ナノ粒子集合構造は長波長側で散乱強 度が大きくなることが推測される。球形 金ナノ粒子集合体において観測した散 乱スペクトルは、波長 700 nm 近傍にピ

図 1. (a) 作製したホール構造体の AFM 像。 (b) レーザー加工により生成するホール内面 積の光強度依存性。

図 2. 作製した構造体の SEM 像(a) 金ホール 一金ナノ粒子集合構造,(b) 金ナノ粒子集合構 造。

ークを示し、さらに長波長側でも散乱強度が増大する。金ナノ粒子二量体は、近赤外域にプ ラズモン共鳴を示すことから、集合体において観測された共鳴構造もプラズモン共鳴に起因 すると推測される。

レーザー加工法と自己組織化を組み合わせることで、金ナノ粒子集合構造の作製法を構築 した。作製した構造の散乱スペクトルは、プラズモン共鳴に起因する共鳴帯を近赤外域に示 す。プラズモン共鳴は、光増強場効果を示すことから、集合構造は増強光反応場としての応 用が期待される。

TOTダイマーの磁気的相互作用と電気伝導性に関する理論研究

(阪大院理) 〇木下啓二、川上貴資、北河康隆、山中秀介、奥村光隆

Electronic conductivity of aromatic hydrocarbons can be affected

by adsorbing triplet oxygen molecule.

(Graduate School of Science, Osaka University) O <u>Keiji Kinoshita</u>, Takashi Kawakami, Yasutaka Kitagawa, Shusuke Yamanaka, Mitsutaka Okumura

【序】コンピュータに使われる半導体デバイスは微細化によりその集積度を向上させることで性能向上やコストダウンなどを実現してきた。現在では20nm ほどの線幅を持つデバイスも登場している。しかし、これ以上の微細化ではこれまで想定されていなかった問題が顕著に表れる。トンネル効果によるリーク電流や界面散乱による電気抵抗の急激な増加などである。こうした問題から新材料によるブレークスルーが望まれており、分子デバイスが候補の一つとして挙げられている。

多環芳香族炭化水素は非局在化したπ電子系の電子移動の起こりやすさから分子デ バイス材料として注目されている。こうした分子系では電気伝導性、光吸収などの特 性において非局在化したπ電子が重要な役割を担うことが分かっている。近年は図 1 に示すような phenalenyl や trioxotriangulene(TOT)誘導体[1]といった開殻電子を持つ分 子や、それに類似した骨格を分子内に持つ物質は非結合性軌道やそれによって形成さ れるネットワークが種々の電子物性において興味深い性質を示すことが期待されて いる。こういった多環芳香族炭化水素分子をデバイスに応用するにはその相互作用を 解析し、特性を制御することが重要である。その一環として化学修飾による制御も盛 んに研究されている。本研究は分子デバイスの実現に向けて、開殻分子系の磁気的相 互作用や化学修飾によるそれらへの影響を量子化学計算により解析することで分子 設計指針を提案することを目指す。

図 1.安定有機ラジカルである (左) phenalenyl と (右) TOT 誘導体である Br₃TOT の構造。

【計算と結果】まず、phenalenyl の電子物性に関して詳細に調べた。化学修飾による影響を調べるためにフェナレニルに酸素分子が吸着し、1-フェナレノンを生成するまでの反応 経路探索を行った。その結果、3 つの遷移状態(TS)を経る反応経路が見つかった。この反応の エネルギープロファイルを図 2 に示す。それぞれの TS での活性化障壁はそれぞれ約 15、3、 40kcal/mol 程度である。特に TS3 のエネルギーが高いことから室温下では TS3 を超えて反応 が起こりにくいと推定される。また安定構造としては、最も安定な PS と、それより弱い吸着 状態である IM1 と IM2 が得られた。以上から酸素分子は結合が切れることなくグラフェン上 のラジカル性が大きな部分構造へ吸着する可能性が示された。また、分子間の磁気的な相互 作用は我々は従来より解析してきた[2-5]。これは、森田らの TOT 結晶に関しても知見を与え ることができる。

次に、森田らの報告にある Br₃TOT 結晶中における最近接の2分子間の磁気的相互作 用について調べた。結晶中の Br₃TOT 分子は分子面同士で近接するもの(面間距離は 3.4Å)、酸素原子同士で階段状に接するもの(O-O 距離は3.1Å)、同一平面内の2分子 が酸素原子と臭素原子で近接するもの(O-Br 距離は3.2Å)の3種類を考えた。この計 算はB3LYP/6-31G**により行った。解析の詳細は当日報告する。

参考文献

[1] Y. Morita, S. Nishida, T. Murata, M. Moriguchi, A. Ueda, M. Satoh, K. Arifuku, K. Sato, T. Takui, Nature Mater. **10** (2011) 947.

[2] Yasushi Morita, Junya Kawai, Naoki Haneda, Shinsuke Nishida, Kozo Fukui, Shigeaki Nakazawa, Daisuke Shiomi, Kazunobu Sato, Takeji Takui, Takashi Kawakami, Kizashi Yamaguchi and Kazuhiro Nakasuji, *Tetrahedron Lett.* 42 (2001) 7991.

[3] Y. Takano et al., J. Am. Chem. Soc., 124 (2002) 11122

[4] Y. Takano et al., Chem. Phys. Ltee. 358 (2002) 17

[5] T. Ukai et al., *Polyhedron*, 26 (2007) 2313.

光捕捉銀ナノ微粒子からの表面増強ラマン散乱と

表面増強ハイパーラマン散乱測定

(関西学院大院理工*, 産業技術総合研究所*) 〇林 宏彰*, 北濱 康孝**, 伊藤 民武**, 尾崎 幸洋*

Surface-enhanced Raman and surface-enhanced hyper-Raman scattering spectral from optically-trapped silver nanoparticles (Kwansei Gakuin University*, Advanced Industrial Science and Technology**) OHiroaki Hayashi*, Yasutaka Kitahama**, Tamitake Itoh**, Yukihiro Ozaki*

【序論】生体細胞では条件などにより分裂や形状の変化が起こる。この際、ラマン分光法を用い ることで細胞にどのような変化が起きるか知ることができる。また、マッピングを用いることで どの部分で起きるかも知ることができる。一般的に生体系では水を含むため赤外吸収で変化を見 ることは困難とされているが、ハイパーラマン散乱(HR)を用いることで、赤外と同じバンドを観 測することができる。しかし、従来は感度が低いために測定が困難であったが、近年その欠点を 克服するために表面増強効果が活用され始めた。今回は、色素分子でスペクトルを測定すること で表面増強ラマン散乱と表面増強ハイパーラマン散乱、赤外吸収の違いを検討した。

【実験】当研究室では、レーザートラップでマッピングもできる暗視野顕微分光システムを利用 した装置を作製した。この装置を用いて、色素分子であるローダミン 6G(R6G)とクリスタルバイ オレット(CV) およびマラカイトグリーン(MG)、2 種類のチアカルボシアニン(SMP-9, NK-2523) から表面増強ラマン散乱(SERS)と表面増強ハイパーラマン散乱(SEHRS)の測定、ならびに赤外吸 収スペクトル(IR)の測定を行った。今回、用いた色素分子の構造を Fig. 1 に、濃度を Table 1 に 示す。また、バンドの振動モードを確認するため量子化学計算も行った。

Figure 1 Chemical structures of (a) R6G, (b) CV, (c) Thiacarbocyanine (SMP-9), (d) Thiacarbocyanine (NK-2523), and (e) MG

Table 1 concentration

		SERS(M)	SEHRS(M)	IR(M)
ローダ	ミン6G	1.08×10^{-6}	1.08×10^{-6}	1.59
クリスタルノ	ヾイオレット	1.10 × 10 ⁻⁶	1.10×10^{-5}	1.18
チアカルボ	(NK-2523)	1.10×10^{-3}	1.10×10^{-3}	0.09
シアニン	(SMP-9)	1.10×10^{-3}	1.10×10^{-3}	0.13
マラカイト	・グリーン	1.16×10^{-3}	1.16×10^{-3}	0.15

Figure 2 IR, SEHRS, and SERS spectra of (a) R6G, (b) SMP-9, and (c) NK-2523.

【結果と考察】まず、R6G やチ アカルボシアニン(SMP-9, NK-2523)のような対称性が低い 分子(Fig. 2a~c)では、IR・SEHRS と SERS のバンド強度比は似て いない結果になった。一方で、ク リスタルバイオレットやマラカ イトグリーンのような対称性が 高い分子(Fig. 3a~b)では、IR・ SEHRS と SERS のバンド強度比 は比較的に似ているという結果 になった。

また、R6GのIRでは存在するが、SEHRSでは存在しなかった 1082cm⁻¹のバンドに注目する。水溶液状態の R6G の IR・SEHRS と計算スペクトルを比較したところ、あまり良い一致をしなかった。そこで、固体状態のIRの実験スペクトルと量子化学計算から求めた計算スペクトルの比較を Fig. 4 に示す。実験値の 1082cm⁻¹の振動モードを計算と文献 1 から求めた。この振動モードはキサンテンの部分ではなくアミノ基やベンゼン環の部分の振動であり、吸着分子の配向からこのモードが増強されなかったと考えられる。

参考文献

1 H. Watanabe, N. Hayazawa, Y. Inouye, and S. Kawata, *J. Phys. Chem. B* (2005), **109**, 5012-5020

ホウ素を含むアルミニウムクラスター負イオン B₂Al₂₁-の 構造探索と電子物性

(JST-ERATO, 慶大理工) 〇岩佐豪, 中嶋敦

Geometry search and electronic properties of boron-doped aluminum cluster anion of $B_2Al_{21}^-$

(JST-ERATO, Keio Univ.) OTakeshi Iwasa, Atsushi Nakajima

【序】アルミニウムクラスターは、その負イオンの Al₁₃ や Al₂₃ が、それぞれ 40 電子、70 電子が原子様の電子殻を満たして閉殻電子構造をとる特徴に加えて、光応答・触媒作用の機 能があることから多くの研究がなされている.さらに、安定性の向上や物性制御の観点から 異種原子置換の試みも報告されており、例えば正二十面体の Al₁₃ ではその構造を保ったまま 中心原子がホウ素原子に置換されて安定性が向上する[1]. 触媒活性の研究が最近報告された アルミニウム 23 量体[2]では、ホウ素 2 原子までが置換して導入できると以前に報告されてお り[1]、ホウ素原子の安定性や触媒活性を含めた電子物性への影響に興味がもたれるが、その 構造や電子物性は未知である.構造に関しては、Al₂₃や1 原子置換した SiAl₂₂の理論計算によ る報告例があるものの、実際には異種原子が更に一つ増えることで非常に多くの構造を考慮 する必要がある.そこで本研究では、Basin-hopping (BH) 法を用いることで負イオン B₂Al₂₁-の構造探索を大域的に行い、得られた安定構造の電子状態および光学特性を明らかにした[3].

【計算】ホウ素内包アルミニウムクラスター B_2Al_{21} ⁻は RI-PBE/def-SV(P)の計算精度で、 TURBOMOLE6.4 を用いて計算した. BH 法による大域的な構造探索には Atomic Simulation Environment を利用し、初期構造として二つの正二十面体 BAl₁₂が Al₃の面を共有した構造を 採用した(図1左下参照).局所安定構造の各原子座標を範囲 0~0.1 a.u.の乱数でシフトさせた 後に再度構造最適化を行い、新たな構造のエネルギー E_n を計算する. 直前の構造のエネルギ ーを E_0 、 $dE = E_0 - E_n$ 、0~1の間の乱数をrとすると、新たな構造は exp(dE/kT) > r の時に採択 した. kT = 100 k_Bとした. この大域的構造探索で得られた最安定構造の電子状態の解析のた

めに、Kohn-Sham(KS)軌道を実空間上 で球面調和関数に射影し、状態密度を 角運動量によって分類し、また光吸収 スペクトルの帰属を行った.

【結果と考察】図1にBH計算の結果 を示す.図内左下は初期構造であり、 図内右下が101step目に得られた安定 構造であり、続く60stepでもこれ以上 安定な構造は見つからなかった.初期 構造は最安定構造よりも1.7 eVほど高 いエネルギーをもち、またそのエネル

図 1. B₂Al₂₁の局所安定構造の全エネルギー. 図内の 構造は初期構造(左下)と最安定構造(右下).

ギー領域には多くの異性体が存在している.最安定構造は他の異性体からは 0.2 eV ほど離れ

ており、また HOMO-LUMO gap (HLG)も1 eV と大きく、この構造の特 異的な安定性を示している.他方、図 1 で特にエネルギーの高い 27,105, 141 step の構造ではホウ素原子が表面 にくるか、あるいは不完全に覆われて おり、またその自然電荷は-1.6~-2.0と表面のアルミニウム原子の-0.3~-0.6 に比べると大きく負に帯電して反 応性をあげると考えられ、ホウ素原子 を内包することが B₂Al₂₁の安定性に 大きく寄与していると考えられる.

図2に最安定構造の状態密度を示す. a は KS 軌道をクラスターの軌道角運 動量(S, P, D,...)で分類してあり、b は 原子軌道(s, p, d)で分類してある. これ をみると電子状態は 1S, 1P, 1D2S 混 成、1F2P 混成、2D1G3S 混成軌道ま でが占有されており 70 電子系となっ ている. 非占有軌道は 1H2F 混成軌道 となっており、占有と非占有軌道の間 で角運動量が0,2,4から3,5と切り替 わっていることは大きな HLG に寄与 していると考えられる. KS 軌道図と図 2b を見比べたところ、節のある軌道に はホウ素の p 軌道が多く関与しており、 ちょうど節の位置にホウ素原子が位置 していることが多かった. S 軌道は節

図 2. B2Al₂₁⁻の状態密度. 各 KS 軌道はクラスター の軌道角運動量および原子軌道に射影してある.

図 3. B₂Al₂₁の吸収スペクトル.

をもたないため、内包原子のホウ素はs軌道だけが寄与している.

図3に吸収スペクトルを示す.線スペクトルに幅0.01 eVのローレンツ関数を被せてある. 遷移を帰属すると0~2.5 eVまでの吸収領域はSDG混成軌道からFH混成軌道間の遷移であ り、HOMO-LUMOバンド間の遷移と見なすことができる.また高エネルギー側の吸収には HOMOバンドの一つ下のPFバンドからの遷移も多く見られるようになる.今後はこれらの 超原子軌道と反応性や触媒活性などの電子物性との関与を明らかにする予定である.

[1] A.Nakajima, T. Kishi, T. Sugioka, K. Kaya, Chem. Phys. Lett. 187 (1991) 239. [2] A.C. Reber,
 P.J. Roach, W.H. Woodward, S.N. Khanna, A.W. Castleman Jr., J. Phys. Chem. A 116 (2012) 8085.
 [3] T. Iwasa and A. Nakajima, Chem. Phys. Lett. 582 (2013) 100.

酸化グラフェン上に担持した

複数金属原子に関する密度汎関数法計算

(京都工芸繊維大*,岡山大**)〇山崎愛弓*,湯村 尚史*,若杉 隆*,

小林 久芳*, 後藤 和馬**, 黒田 泰重**

Density functional theory calculation study on structural properties of metal atoms on graphene oxides

(Kyoto Institute of Tech.^{*}, Okayama Univ.^{**}) • Ayumi Yamasaki^{*}, Takashi Yumura^{*}, Takashi Wakasugi^{*}, Hisayoshi Kobayashi^{*}, Kazuma Gotoh^{**}, Yasushige Kuroda^{**}

【緒言】酸化グラフェン (GO) は、酸素原子を含む官能基で修飾されたグラフェンから成る層状化合物である.主要な官能基としてエポキシ基とヒドロキシ基が挙げられる.最近の透過型顕微鏡観察により、GO 上に担持した金属が特異な配列をとり、その配列は金属の種類によって異なることが明らかになっている[1].この実験報告では、ロジウム原子を GO 上に担持した場合、約 5 Å 間隔で規則的に単原子の状態で配列した.一方、白金またはパラジウム原子の場合はクラスターが生成するが、白金の場合は三原子クラスターが、パラジウムの場合は大きなクラスターが生成することが報告されている.そこで、本研究ではこの特異な配列挙動の要因を探るため、密度汎関数法計算を用いて GO 上に担持した金属の構造特性に関する知見を得た.

【計算方法】本研究では、GO 上に担持した複数金属原子 M (M=Rh, Pd, Pt) の形態 (M_n-GO) を調べるため、密度汎関数法計算 (B3LYP 法) を行った. ここで GO として C₉₆H₂₆O(OH)₄ を用いた. 基底関数は、炭素、水素および 酸素原子には 6-31G** 基底、ロジウム、パラジウムおよび白金原子には CEP-121G 基底を用いた.

【結果・考察】GO 上に担持した複数金属原子 M の形態を調べるため,密度 汎関数法計算を行った.本研究では,以下の三つの相互作用に注目した.一つ 目は金属原子間の相互作用で,金属原子に二つ目の金属原子が結合する時 (M-M)の安定化エネルギーに相当し, $E_b(M-M) = E_{total}(M-M) - 2 \times E_{total}(M)$ で表 される.ここで,ある最適化構造におけるエネルギーを E_{total} と表す.二つ目 は金属原子と GO の相互作用で,GO に金属原子が結合するエネルギー $E_b(M-GO) = E_{total}(M-GO) - E_{total}(GO) - E_{total}(M)$ とした.三つ目の相互作用は, n 番目の金属原子と GO の相互作用で,n 番目の金属原子と n-1 番目の金属 を担持した GO との相互作用を $E_b(M_n-GO) = E_{total}(M_n-GO) - E_{total}(M_{n-1}-GO) - E_{total}(M)$ とした.

Figure 1 に金属原子を GO 上に担持したモデルの最適化構造を示す.パラジウムおよび白金原子は GO の上に結合した状態となったが,ロジウム原子は GO 上に存在した酸素原子と錯体を形成した.この結合状態の違いが,GO 上での金属配列の差異の起源になるものと考えられる.ここで,ロジウム,パラジウムおよび白金の相互作用 E_b(M-M), E_b(M-GO)を Table 1 にまとめた.

Figure 1. 金属 — 酸 化 グ ラ フ ェ ン の 最 適 化 構 造. (a) Rh — GO, (b) Pd — GO, (c) Pt — GO.

-64.2

-90.7

-67.0

金属原子	$E_b(M-M)$	$E_b(M-GO)$	$E_b(M_2-GO)$	$E_b(M_3-GO)$	$E_b(M_4-GO)$
Μ	[kcal/mol]	[kcal/mol]	[kcal/mol]	[kcal/mol]	[kcal/mol]
Rh	-34.9	-132.6	-45.5	-81.3	_
Pd	-11.8	-17.3	-18.3	-35.2	-41.9

-24.3

Ρt

-51.9

Table 1. 金属 (Rh, Pd, Pt)の金属-金属間および金属-GO 間の相互作用エネルギー.

 $E_b(M-M)$ と $E_b(M-GO)$ を比較することにより,金属原子の種類によって結合しやすい原子(金属原子または酸素原子)が異なることがわかる. ロジウム原子は $|E_b(Rh-Rh)| < |E_b(Rh-GO)|$ で,金属と GO との相互作用が構造を決定する上で重要であることがわかった. これは、ロジウム原子が GO 上の修飾酸素原子との親和性が高いことを示す. 一方,白金原子の場合は $|E_b(Pt-Pt)| > |E_b(Pt-GO)|$ で,金属間の相互作用が構造決定因子である. つまり,白金原子は GO よりも金属原子との親和性が強い. パラジウム原子の場合, $|E_b(Pd-Pd)|$ と $|E_b(Pd-GO)|$ はほぼ同じ値をとり,GO または金属原子との親和性は同程度であることがわかった.

次に、複数金属原子が GO 上に存在した場合を考える($E_b(M_n$ -GO), Table 1). Table 1 から、GO 上での複数金属原子の形態が予想できる(Figure 2). $|E_b(M-GO)| > |E_b(M_n-GO)|$ の場合 (Figure 2(A)),ある金属原子はクラスターで存在するよりも単核の状態の方がエネルギー的に安定であり、逆の場合 (Figure 2(B)) はクラスターで存在する方が安定である.

Figure 2. n 番目の金属原子 M が結合するサイト. (A)GO 上の酸素原子 (B)金属原子.

Table 1 から, ロジウムの場合は Figure 2(A) に, パラジウムと白金の場合は Figure 2(B) に相当することがわかる. さらに, クラスター生成が有利な系で も挙動が異なることがわかる. 実際, Table 1 からパラジウムは n が増加する につれて安定化の度合が大きくなったが, 白金では n=3 で最も安定化を示 した. つまり, パラジウムは GO 上で大きなクラスターを形成するほど安定 となり, 白金は三原子クラスターを形成する時に最も安定となることが明ら かとなった.

【参考文献】[1]K. Gotoh, et al. Chem. Lett. 2012, 41, 680-682.

超原子価ラジカル H₃0 及び NH₄の溶媒和クラスターの理論研究 (首都大学東京) ○北山 清章, 岩瀬 響, 間宮 正輝, 橋本 健朗 Theoretical study of solvation clusters of hyper valence radicals, H₃O(H₂O)_n and NH₄(NH₃)_n (Tokyo Metropolitan Univ.) ○Kiyoaki Kitayama, Hibiki Iwase, Masaki Mamiya, Kenro Hashimoto

[序] H₃O、NH₄は、溶液での溶媒和電子の輸送体としての興味などから注目されているが、 分子論的情報は少なく、クラスターでの研究が待たれている。NH₄(NH₃)_nについては、電子スペ クトル(冨宅(分子研))、赤外スペクトル(石内、藤井(東工大))が測定され、我々も電子スペ クトルの構造依存性の理論研究を報告した。一方、H₃O(H₂O)_nでは分光学的研究はほとんど進ん でおらず、理論の先導が期待されている。本研究では(i) H₃O(H₂O)_n(*n*=0-2)の構造と電子状態、 ポテンシャル面と反応性を量子化学計算し、NH₄(NH₃)_nと比較して両クラスターの性質を理解す ること、(ii) NH₄(NH₃)でこれまで説明できていない赤外バンドを解明することを目的とした。

[方法] 量子化学計算は Gaussian09 を用い、MP2/aug-cc-pVDZ レベルで行った。安定構造、 遷移状態、解離経路の探索には GRRM 法を用いた。AIM 解析は Hartree-Fock レベルで行った。 非調和振動解析は、4E06 で報告する方法で行った。

[結果と考察] H₃O は C_{3v} 対称、H₃O(H₂O)は水素結合を一つ持つ C_s 対称構造であった。H₃O(H₂O)₂ には、H₃O が H₂O に挟まれた 232 型異性体が 1 つと、端に H₃O がある 322 型異性体が 4 つあった。図 1 に示した 322 型構造が最安定で、232 型が最も高くエネルギー差 は 0.93 kcal/mol である。一方、NH₄(NH₃)₂では、NH₃NH₄NH₃(343) 型が、NH₄NH₃NH₃ (433) 型より 1.16kcal/mol 安定で H₃O とは異 なっている。図 1 の 322 型 H₃O(H₂O)₂の電子状態は、SOMO と AIM 解析による Bond Path から水素結合していない H 同士を余剰電子が 仲立ちする surface bound 型の水和電子であることが解る。

表1に、溶媒和エネルギー ΔEs 、クラスター内水素移動の活性化エ ネルギー ΔE^{*}_{HT} 、水素原子解離 (H₃O(H₂O)_n \rightarrow H + (H₂O)_{n+1})の活 性化エネルギー ΔE^{*}_{HD} と反応熱 ΔE_{HD} を示した (kcal/mol)。NH₄(NH₃)_n の値も示してある。H₂ 脱離の活性化エネルギーは 10.1(H₃O)と 22.3 (NH₄) kcal/mol、H₃O の傘反転の障壁は 4.1 kcal/mol であった。

Fig.1. H₃O(H₂O)₂の最安 定構造(322型) 上図・・・SOMO 下図・・・AIM 解析で得ら れた水素・水素間の Bond Path

ΔEsは、1:1 では共に8 kcal/mol ほどだが、 溶媒が2分子となると H₃O ではやや非加法 的で約19 kcal/mol となる。余剰電子の水和 が非加法性の原因と考えられる。H₃O(H₂O)_n の ΔE_{HT}^{*} は NH₄(NH₃)_nと比べて半分以下で、 また 1.55(n=1)、0.78(n=2) kcal/mol と減少す る。 ΔE_{HD}^{*} も水分子数の増加とともに減少し、 n=2 では 0.31kcal/mol まで減って、水素移動 よりも低くなる。対照的に NH₄(NH₃)_nでは -

Table 1. $H_3O(H_2O)_2 \ge NH_4(NH_3)_2$ のエネルギー関係

n	ΔEs	$\Delta {\sf E}^{\rm \#}_{\rm HT}$	$\Delta {\sf E}^{\rm \#}_{\rm HD}$	$\Delta {\rm E}_{\rm HD}$
$H_3O(H_2O)_n$				
0			2.54	20.90
1	8.21	1.55	1.89	19.01
2	19.31	0.78	0.31	19.55
$NH_4(NH_3)_n$				
0			12.50	0.18
1	8.12	4.08	13.81	-4.30
2	15.58	4.19	13.23	-3.48

12-14 kcal/mol でほぼ一定である。H₃O(H₂O)₂では余剰電子を捕捉する OH が 1.049A まで伸び ていて、余剰電子によるプロトンの引き抜き機構で H が解離する。この機構は Na(H2O)』の水素 「解離と似ているが、H₃O の方がずっと低い。ΔE_{HD}が、H₃O(H₂O)nと NH₄(NH₃)nで最も異なる。 前者ではサイズに依らず約 20 kcal/mol の発熱反応であるのに対し、後者では溶媒和で約 4 kcal/mol の吸熱である。低い障壁と併せて H₃O(H₂O)nでは容易に解離が起きて生成したとしても 極短寿命と考えられる。一方 NH4(NH3) では十分な内部エネルギーがないと解離せず、裸の NH4で13psの寿命が溶媒和で1µs以上に伸びる実験 Table 2. NH₄(NH₃)の非調和振動数(cm⁻¹)

事実とも調和的である。

表 2 に NH₄(NH₃)の非調和振動数を示した。ポテ ンシャル面の原点は Cav 対称性を持つ遷移構造であ る。Mode1 は分子間の H 移動、Mode5 は N-N 間伸 縮、Mode16,17 は全対称 N⁻H 伸縮、Mode18⁻21 は 非対称 N-H 伸縮である。図 2 に 1K でシミュレート した振動回転スペクトルを示した。最も強い 3260cm⁻¹のピークが実験の 3270cm⁻¹のバンドと非 常によく一致している。この振動は mode17 の全対

Mode	VSCF	V-CISDT	調和
1	370	38	-
5	477	387	545
16	3228	3300	3251
17	3268	3260	3307
18	3394	3513	3438
19	3382	3488	3438
20	3410	3537	3455
21	3409	3536	3455

称 N·H 伸縮で帰属は調和解析と一致するが、他モードとの相対強度が大幅に改善された。

Fig.2. NH4(NH3)の IR スペクトル 左上図・・・実験 左下図・・・調和解析 右図・・・非調和解析

Car-Parrinello 分子動力学法による Au₈ 金クラスター及び Au₇Cu クラ スターの一酸化炭素酸化過程の追跡

(分子科学研究所¹、京都大学触媒・電池元素戦略拠点ユニット²、ストラスブール大学³)
 ○小泉健一^{1,2}, Mauro Boero³, 信定克幸^{1,2}

Car-Parrinello dynamics study on oxidation mechanism of CO on Au₈ and Au₇Cu alloy clusters

(IMS¹,ESICB²,IPCMS³)○Kenichi Koizumi^{1,2}, Mauro Boero³, Katsuyuki Nobusada^{1,2} [序] 春田等によって金ナノ粒子の一酸化炭素酸化触媒反応が発見されて以来[1]、金ナ ノ粒子、金クラスターの触媒反応における実験、理論両面での研究がおこなわれてきた。 金クラスターの場合、八原子よりも大きなクラスターでの CO 酸化触媒活性が報告され てきた。クラスターの形状および酸化反応の詳細なメカニズムについては実験によるア プローチだけでは不十分であり、シミュレーションによって原子の振る舞いを直接観察 し、その電子状態を解析することが有効になってくる。例えば Au₁₃のクラスターは実 験では正二十面体型や立方八面体型が仮定されていたが、近年の第一原理分子動力学の 計算では、不定形なアモルファス型が真空中では安定であり、定まった形状を持たない ことが指摘されて来ている[2]。これは温度を露に取り込み、化学結合の組み替えを記 述できる第一原理分子動力学が有効な情報を与えた例と言える。その一方で、高価な金 を安価な元素で置き換えることにより元素を有効利用しようという研究が進んできて いる。このため今回は、触媒活性を示す最小単位である Ausクラスターとその一原子を 銅原子に置換しドープしたクラスターの触媒活性について第一原理分子動力学法を用 いて解析を行った。

[計算の詳細] 周期境界条件下において 128 原子、二層の MgO 表面スラブモデルを用 いその上に Aus クラスター、Au₇Cu クラスターを置いて、室温(300K)において分子動 力学を実行し、クラスターの形状を定めた。分子動力学には密度汎関数理論に基づいた Car-Parrinello 型の分子動力学を用いた。Au には精度を検証した上で semicore を含ん だ Hartwigsen-Goedecker-Hutter 型の擬ポテンシャルを用い[3]、Cu、Mg については semicore を含んだノルム保存型擬ポテンシャル、C,Oにもノルム保存型擬ポテンシャル を用いた[4]。これらのポテンシャルは過去にも他の系の計算に用いられ、検証を経た ものである。Nose'-Hoover chain 法により 300K の温度コントロールを行った。CO や O₂の吸着過程には拘束の動力学を基礎とした Blue-moon ensemble の自由エネルギー・ サンプリング法を用い吸着過程の自由エネルギープロファイルを求めた。汎関数は静的 な計算、動的な計算で先行研究に多く使われている GGA-PBE を用いた。 [計算結果] 金の擬ポテンシャルの精度を検証するため、Au₄、Au₈、Au₁₃、Au₂₀の真空 中、室温でのシミュレーションを行った。Au4、Au8、Au20についてはクラスターの形状 に大きな変化は見られず、望ましい結合距離を再現することを確認した。Au₁₃,正二十 面体型については、形状が崩れアモルファス状に構造変化した。これは先行の第一原理 分子動力学法による結果を再現したものと考えられる。金の擬ポテンシャルの有効性を 十分確認した上でスラブモデル上のクラスターのシミュレーションを行った。現在、第 一原理分子動力学法による先行研究として Bongiorno 等による金クラスター上での CO 酸化反応シミュレーションがある[5]。ここでは立体構造を持った Aug クラスター(ナゲ ット構造)が用いられており、シミュレーションの間、この構造を保っていると報告さ れている。我々の今回のシミュレーションでは初期構造にナゲット型を用いたが、5ps の短時間に MgO 表面上のクラスターは構造変化し Au₈は平面型、Au₇Cu は銅の位置が 移動し平面型及び、歪んだピラミッド型構造に自発的に構造変化することを発見した (図参)。Augの構造変化は真空中では見られず表面との相互作用によるものであること が明らかとなった。差分電荷密度の解析では表面の電荷密度は減少しクラスター側の電 荷密度が上昇していることから、クラスター側に電荷移動が起こることでクラスターの 反結合性が高まり、室温での構造変化が引き起こされていることが明らかとなった。ク ラスター表面上での CO 酸化過程を解析するため Blue-moon ensemble 法を用い CO の吸 着過程をシミュレートしたが Aug, Au₇Cu ともに 0.6eV のバリアを超えても吸着は見ら れず、現段階では CO のクラスターへの吸着確率は低いと予想される。このため O₂が 最初にクラスターに吸着しクラスター表面で吸着した O₂が CO と反応することが予想 され、現在 O₂の吸着過程のシミュレーションを行っている。結果を当日発表したい。

(図: (A) ピラミッド型の Au₇Cu クラスター, (B)平面型 Au₇Cu クラスター, (C)平面型の Au₈クラスター。全て室温下で構造変化したもの。(D) MgO 上 Au₈クラスターの差電荷密度。オレンジは減少、緑は増加。)

- [1] M.Haruta, N.Yamada, T.Kobayashi, and S.Iijima, J. Catal, 115, 301 (1989)
- [2] E.C.Beret, L.M.Ghiringhelli, and M.Scheffler, Faraday discuss. 152, 153 (2011)
- [3] C.Hartwigen, S.Goedecker, and J.Hutter, Phys. Rev. B 58, 3641 (1998)
- [4] N.Troullier and J.L.Martins, Phys. Rev. B 43, 1993 (1991)
- [5] A.Bongiorno and U.Landman Phys. Rev. Lett. 95, 106102 (2005)

二次元赤外分光法による

水溶液中における非イオン性振動プローブ分子の動的挙動 (神戸大院・理¹, 琉球大・理², 神戸大・分子フォト³, 分子科学研究所⁴) 〇<u>奥田真紀¹</u>, 東雅大²,太田薫³, 斉藤真司⁴, 富永圭介^{1,3}

The Dynamics of Non-ionic Molecules in Aqueous Solution Studied by Two-dimensional Infrared Spectroscopy

(1.Graduate School of Science, Kobe Univ., 2. Department of Chemistry, Biology and Marine Science, Univ. Ryukyu, 3.Molecular Photoscience Research Center, Kobe Univ., 4.Institute for Molecular Science)

o<u>Masaki Okuda</u>¹, Masahiro Higashi², Kaoru Ohta³, Shinji Saito⁴, Keisuke Tominaga^{1,3}

【序】水溶液中では、溶質分子周辺に3次元的に広がる水素結合ネットワークの構造揺らぎの影響を受けて、溶質分子の分子振動の振動数は揺らいでいる。そのため、溶質分子の振動数揺らぎには、溶質分子周辺の水のダイナミクスおよび溶質-溶媒間相互作用に関する情報が反映される。水溶液中で進行する化学反応や種々の緩和過程の理解において、これらの知見は非常に重要である。これまで、我々は、水溶液中における N₃や SCNなどのイオン性振動プローブ分子の振動数揺らぎを赤外3-パルスフォトンエコー法により調べてきた[1]。一方、疎水性水和に代表されるように、疎水基周辺にはクラストレート状の水和構造が形成されていると考えられており、疎水基周辺の水のダイナミクスおよび溶質-溶媒間相互作用の解明が期待されている。

そこで、本研究では、ベンゼン環に振動プローブ部位としてチ オシアノ基(-SCN)を導入した2-ニトロ-5-チオシアナト安息香酸 (NTBA)を溶質分子として用いた(図1)。この分子の振動プロ ーブ部位は非イオン状態であるため、先行研究との比較から、疎 水基周辺の水のダイナミクスおよび溶質-溶媒間相互作用に関する 知見が得られると期待できる。本研究では、二次元赤外(2D-IR) スペクトル測定および分子動力学(MD)シミュレーションを用い た理論計算を行い、水溶液中における溶質分子の振動数揺らぎを 詳細に調べた。

【実験および計算方法】2D-IR 分光測定では、中赤外パルス光を3 つに分け、そのうち2つをポンプ光、1つをプローブ光とした。こ こで、2 つのポンプ光間の遅延時間をコヒーレンスタイム(r)、2 番目のポンプ光とプローブ光間の遅延時間をポピュレーションタ イム(T)と定義した(図2)。あるTにおいて、rをスキャンしな がら試料から発せられたエコー信号を測定し、得られた信号をフー リエ変換することで、2D-IR スペクトルを得た。

また、理論計算では、平衡状態における NTBA 水溶液に対して 1 ns (NVT 条件: 300 K、1.0 g / cm³)の MD 計算を行い、得られたト ラジェクトリーの解析を行った。

図 1. H₂O 中における NTBA の
 FT-IR スペクトル。図中の左上に
 NTBA の分子構造を示す。青丸で
 囲んだ部分の CN 伸縮振動モード
 を観測した。

図 2.2D-IR 測定におけるコヒー レンスタイム*τ*およびポピュレー ションタイム*T*の定義。

【結果と考察】図1に H₂O 中における NTBA の CN 伸縮振動モー ドの赤外吸収スペクトルを示す。この吸収バンドの中心波数は 2169.3 cm⁻¹、半値全幅は 17.3 cm⁻¹であった。図 3(a)に H₂O 中にお ける NTBA の 2D-IR スペクトルを示す。 ω_{pump} と ω_{probe} はそれぞれ 1 番目のポンプ光照射時の振動数とプローブ光照射時の振動数を表 している。2D-IR スペクトルは、T だけ離れた異なる 2 つの時刻に おける振動数*w*_{pump}と*w*_{probe}の間の相関図である。2つの振動数の間 に相関がある時は2D-IR スペクトルは対角方向に傾き、相関が失わ れると 2D-IR スペクトルは円形に近づく。よって、この形状変化を 詳細に解析することにより、溶質分子の振動数揺らぎの時間相関関 数 C(T)に関する情報を得ることができる。本研究では、2D-IR スペ クトルの形状変化を信号の稜線の傾き(Center Line Slope; CLS)を 用いて定量化した。図 3(b)に T に対して NTBA の 2D-IR スペクト ルから得た CLS をプロットしたものを示す。式(1)で示すように、 H₂O 中における NTBA の C(T)は 2 つの指数関数と定数項の和で再 現できることが数値計算を行うことにより分かった[2]。

$$C(T) = \left\langle \Delta \omega(T) \Delta \omega(0) \right\rangle = \sum_{i=1}^{2} \Delta_{i}^{2} \exp\left(-T / \tau_{i}\right) + \Delta_{0}^{2} \qquad (1)$$

既に報告されている **D**₂**O** 中における **SCN**の *C*(*T*)との比較から、 NTBA 周辺の水分子のダイナミクスは、SCN 周辺のものとほぼ同じ であることが示唆された[1]。

本研究では、2D-IR 分光測定で観測された振動数揺らぎに反映さ れるダイナミクスおよび溶質-溶媒間相互作用を分子レベルで理 解するため、H₂O 中における NTBA に関する MD シミュレーショ ンを用いた理論計算を行った。図4に、系中の全水分子(1841 個) およびチオシアノ基のN原子に対して最近接する4つの水分子が チオシアノ基に形成する電場の結合軸方向成分の揺らぎを示す。 この2つの方法で求めた電場の揺らぎの大きさは、ほぼ一緒であ った。このことから、NTBA の CN 伸縮振動モードの振動数揺ら ぎに対してチオシアノ基付近に存在する水分子との相互作用が重 要であるということが分かった。

発表では、2D-IR 分光測定の測定結果および MD シミュレーションを用いた理論解析の詳細をふまえて、本研究で観測された水 溶液中における NTBA の振動数揺らぎについて議論を行う。

1. K. Ohta , J. Tayama, S. Saito, and K. Tominaga, *Acc. Chem. Res.*, **45**, 1982 (2012).

2. 奥田 真紀、太田 薫、富永 圭介、分子科学討論会 2013、1D20
 3. T. Darden, D. York, and L. Pedersen, J. Chem. Phys., 98, 10089 (1993).

図 3. (a) 実験から得られた H₂O 中 における NTBA の 2D-IR スペクト ル。スペクトル中の黒線は信号の稜 線を示し、その傾きが CLS である。 (b) (青丸)実験から得られた CLS と (赤線) 数値計算から得た CLS の T に対するプロット。C(T)中の各 パラメータは以下の通りである。 $\Delta_0 = 0.1 \text{ ps}^{-1}, \ \Delta_1 = 2.4 \text{ ps}^{-1}, \ \tau_1 = 0.08$ ps、 $\Delta_2 = 0.8 \text{ ps}^{-1}, \ \tau_2 = 1.0 \text{ ps}.$

図4. 水分子がチオシアノ基上に形成する電場の結合軸方向成分の揺らぎ。(a) チオシアノ基のN原子に最近接する4つの水分子、(b)
 系中の全水分子を対象として計算した結果。また、電場計算は
 Particle-mesh Ewaldの式を用いて行った[3]。

超臨界 n-ペンタン水溶液のゆらぎ解析における体積因子の効果

(千葉大院・融合科学) ○澁田諭, 西川惠子, 森田剛

Influence for volume factor in fluctuation analysis of supercritical *n*-pentane aqueous solution (Chiba Univ.) OSatoshi Shibuta, Keiko Nishikawa, Takeshi Morita

【序】超臨界流体は他の相に比べ分子分布が非常に不均一である。このような系を直接表現できる物理量にゆらぎがある[1]。Bhatia-Thornton 理論[2]による二成分系の濃度の不均一を表した濃度ゆらぎ *S*_{CC}(0)は以下のように表現される。

$$S_{\rm CC}(0) = \left\{\frac{I(0)}{\bar{N}} - \bar{Z}nk_{\rm B}T\kappa_{\rm T}\right\} / \left\{\frac{\bar{Z}(\nu_{\rm A} - \nu_{\rm B})}{V_{\rm mol}} - (Z_{\rm A} - Z_{\rm B})\right\}^2 = (S_f - D_f) / V_f^2$$

 $S_f = I(0)/\overline{N}$, $D_f = \overline{Z}nk_BT\kappa_T$, $V_f = \overline{Z}(v_A - v_B)/V_{mol} - (Z_A - Z_B)$

各因子は、散乱角 0 °の散乱強度 I(0)より決定される散乱因子 S_f 、等温圧縮率 κ_T より決定される密度因子 D_f 、そして部分モル体積 v_A 、 v_B より決定される体積因子 V_f と定義する。なお \overline{Z} 、 V_{mol} 、 Z_i は平均電子数、モル体積、i分子の電子数である。但し $v_A > v_B$ かつ $Z_A > Z_B$ とする。

本研究ではこれまで当研究室が行ってきた超臨界 *n*-ペンタン水溶液系の研究[3]の発展として、 各因子がゆらぎに与える影響について考察した。各熱力学条件で小角 X 線散乱実験と密度測定を 行い、濃度ゆらぎを決定した。図1には対象試料の測定点を示した。

【実験】

(1) X線吸収法を用いた密度測定

既報の論文[4]を基に新規に製作された高温高圧サンプルセルに水とn-ペンタンを封入した。濃度はn-ペンタンのモル分率0.0880とした。温度は647Kの等温条件で、0.1~50MPaの圧力範囲を減圧過程で測定した。各熱力学状態でX線を照射し、入射光と透過光の強度比からLambert-Beerの法則を用いて密度を決定した。体積因子と密度因子は、密度を濃度もしくは圧力で微分して得られた部分モル体積と等温圧縮率から決定された。

(2) 小角 X 線散乱実験

小角 X 線散乱実験は、高エネルギー加速器研究機構 の Photon Factory で行った。実験条件、試料の調製法、 温度と圧力制御は、(1)と同様である。密度測定と同じ 熱力学条件下で、X 線を照射し、散乱 X 線は、半導体 型二次元検出器 PILATUS 300 K で検出した。散乱因子 は散乱プロファイルを Ornstein-Zernike 式を用いて解析 された散乱角 0°の散乱強度から決定した。

【結果と考察】

濃度ゆらぎと各因子の圧力依存性を図2に示す。図2
より超臨界 *n*-ペンタン水溶液には主に3つの特徴的な
挙動(22 MPaの発散、38 MPaの極値、42 MPa以上の
増加)が観測された。38 MPa付近のゆらぎの極値は常

温常圧の溶液系で見られるような溶質溶媒間の相互 作用による濃度の不均一が生じており、42 MPa から のゆらぎの増加は相分離曲線への接近に伴う同種分 子間相互作用の増加が寄与していると考えられる。

一方、22 MPa で生じるゆらぎの発散は水の臨界点 CP_{water} (647 K, 22 MPa) で生じていることから neat な 超臨界水としての性質が現れているように見える。し かし、図1で示されるように実験条件が相転移曲線か ら離れていることと、ゆらぎが発散するほどの分子分 布の不均一が存在するにも関わらず散乱強度にその シグナルが現れないことから、本実験で得られた結果 は解析上でのみの発散であり実際の系内では生じて いない可能性がある。

濃度ゆらぎの発散は主として体積因子が寄与して いる。体積因子の物理的意味は、『成分 A と B の体積 的なポテンシャル差の理想状態からの過剰量』を電子 数単位で示している。つまり、添加に伴う系の変化分 の成分差は最低でも(ZA – ZB)の値を持つこととなり、 体積因子が負の値をとることは理論上ない。一方で図 3 に示した体積因子の密度依存性見ると 22 MPa 以下 の領域で負の値をとる。この領域は、低圧(低密度) であるために成分の体積的な添加効果の差が密度(分 子間力)の減少とともに低下していくことで水と *n*-ペンタンの部分モル体積(図 4. 部分モル体積の密度 依存性)の接近が起こり体積因子に負の値が生じる。 そしてその過程にできた零点がゆらぎの発散を引き 起こしていると考えられる。

【結論】超臨界流体のゆらぎ解析について、各因子が 与える影響について考察した。その結果、超臨界 *n*-ペンタン水溶液で観測されるゆらぎの発散は体積因 子が寄与していることが分かった。ゆらぎの発散を引 き起こす体積因子の零点は、成分の体積的な添加効果 の差の消失が部分モル体積を介して生じている。

【参考文献】

- [1] K. Nishikawa, T. Morita: Mol. Sci., 6, A0054 (2012)
- [2] A. Bhatia, D. Thornton: Phys. Rev., B2, 3004 (1970)
- [3] T. Morita et al: Chem. Phys. Lett., 543, 68 (2012)
- [4] T. Morita et al: Rev. Sci. Instrum., 72, 3013 (2001)

誘電緩和測定によるイオン液体 (Csmim) BF4の相挙動の観測

(福岡大院・理) 〇高松卓矢・二文字亮彦・渡辺啓介・祢宜田啓史

Observation of phase behavior of ionic liquid (C₈mim)BF₄ by dielectric spectroscopy

(Fukuoka Univ.) oT. Takamatsu, A. Nimonji, K. Watanabe, and K. Negita

【序論】イオン液体は、嵩高いカチオンとアニオンからなる室温で液体の電解質である。イ オン液体のイオン間または分子間には、通常の分子性液体が持つファンデルワールス力に加 え、クーロン力が働くため、不揮発性や不燃性などの特徴があらわれる。このような特徴を 活かして、最近では通常の有機溶媒に代わる環境に優しい溶媒として用いられ始めている[1]。 これまでに当研究室では、図1に示すイオン液体 (C₈mim)BF₄が、昇温過程で過冷却状態から 中間相へ相転移することを示してきた。その秩序化挙動は、試料の熱履歴に強く影響される

ことが分かっているが、その詳細は明らか ではない。本研究では、イオン液体 (C₈mim)BF₄の秩序化挙動がアニール温度お よびアニール時間にどのように依存するの かを誘電緩和測定から調べた。

図1. (C₈mim)BF₄の分子構造。

【実験】試料の (C₈mim)BF₄ (IOLITEC 社製,純度:99.9%) には, 2.0×10^{-3} torr で約50時間脱水処理したものを用いた。含水量をカールフィッシャー法で434 ppm であることを確認し、He ガス (6.0 × 10² torr) とともに、金メッキした二重円筒型のセルに封入した。そして、インピーダンスアナライザー (HP 4284A) を GPIB でコンピュータと接続し、HP-BASIC プログラムによって誘電率の温度および周波数依存性の自動測定を行った。また、ある温度での誘電率は、試料温度が一定になるまで 3000 秒または 10000 秒間 (平衡時間)待って、測定した。

【結果と考察】図2は、冷却および昇温方向 での誘電率を、測定周波数10kHz,温度100 K-380Kで測定した結果である。冷却方向で の誘電率は、温度の低下とともに、連続的に 減少しており、2つの誘電緩和が観測され た。

図3は、冷却方向、および195K付近で異なるアニール時間で処理した試料の昇温方向での誘電率の温度依存性である。冷却および 昇温方向での誘電率がわずかに異なることは、これらの過程で微視的な構造が異なるこ

図2. 冷却および昇温方向における誘電率の温度依存性。平衡時間:3000秒

とをしていると思われる。アニール時間 が 33 時間より短い場合には,誘電率は温 度とともになめらかに増大するが,33 時 間アニールを行った場合には,231 K で秩 序化に伴う急激な誘電率の減少が観測さ れた。このことから,中間相の核形成に は,12 時間以上のアニール時間を要する と考えられる。

図4は,異なる温度で30時間アニール した試料の昇温方向における誘電率の温 度依存性測定した結果である。アニール 温度が220K以上では,秩序化は生じなか ったが,アニール温度が210K以下では, 中間相への転移が観測され,秩序化開始 温度はアニール温度とともに低下した。 この秩序化温度の低下は,液体中のメゾ 構造の秩序度が高くなることで生じたと 考えられる。

図5は、アニール処理をせずに193Kか ら昇温した試料と,3日間208Kあるいは 213 K でアニール処理した試料を1 K/mim で昇温した試料の,223 K での誘電率の時 間依存性を測定したものである。213 Kか ら昇温した試料の誘電率には時間変化は 見られなかったが、208 K および 193 K で アニールした試料では、秩序化による誘 電率の連続的な減少が観測されるが、ア ニール温度が異なると,長時間保持した 試料の誘電率は異なる結果となった。ま た,図5の挿入図に示すように,208 K で アニールした試料では誘電率が低下し続 けることも分かった。このように、相転 移後の状態はアニール温度に依存して異 なる。また、X線回折の測定から、液晶相 と液相が共存状態にあることも分かって おり、この挙動も誘電率の振る舞いに関 係すると思われる。

図3.195K付近で,異なるアニール時間で処理をした 試料の昇温方向における誘電率の温度依存性。アニー ル時間:0時間(○),6時間(□),12時間(◇),33時間 (△)。●は冷却過程。平衡時間:3000秒。

図4. 異なる温度で 30 時間アニール処理をした試料の 昇温方向における誘電率の温度依存性。アニール温 度:(O)240 K,(□)230 K,(◇)220 K,(△)210 K,(▽) 200 K,(△)190 K,(⊲)180 K。平衡時間:10000 秒。

図5. 異なるアニール処理をした試料の 223 K におけ る誘電率の時間依存性。

【参考文献】

[1] M. J. Earle and K. R. Seddon, Pure Appl. Chem., 72, 1391 (2000).