3P125

メソ多孔有機シリカの細孔表面に形成された金属錯体の構造解析

(豊田中研¹,ACT-C², 岡山大院医歯薬³,名大院理⁴,分子研⁵,名大物国セ⁶) ○白井聡一^{1,2},前川佳史^{1,2},脇稔³,邨次智^{4,5},唯美津木^{5,6},稲垣伸二^{1,2} shirai[at]mosk.tytlabs.co.jp(送信時は[at]を@に変更)

【緒言】メソ多孔有機シリカ(Periodic Mesoporous Organosilica, PMO)は規則正しい細孔構造と、有機基が均一か つ密に分布した細孔壁を有する新規な多孔質材料である(Figure 1(a))。細孔壁に組み込む有機基は、対応する 有機シラン前駆体を原料として用いることにより、任意に選択可能である。最近、この特徴を活かし、金属配位子 を有機基とする PMO が合成された[1][2]。このような PMO の細孔表面には、錯形成により様々な物性を付与で きることから、細孔構造との組み合わせによる多彩な機能の発現が期待できる(Figure 1(b))。ここで、細孔表面に おける錯形成の副次的効果として、近傍の有機基・シリカ骨格の影響を受けた錯体が、均一系と異なる歪んだ構 造をとる可能性がある。分子構造の歪みは、電子状態の変化につながり、歪みの無い構造とは異なる物性を与 え得る。我々は、この歪みを制御することにより、新奇な高活性触媒・光触媒の創生に取り組む。その一環として、 本研究ではビピリジン(bpy)を有機基とする PMO(BPy-PMO)の細孔表面に形成された Ru 錯体のモデルにつ いて量子化学計算を行い、広域 X 線吸収微細構造(Extended X-ray Absorption Fine Structure, EXAFS)の結果と 比較することにより、その構造を推定した。

Figure 1. (a) TEM and schematic images of PMO. (b) Schematic image of BPy-PMO with Ru complexes on the pore wall surfaces.

【計算の詳細】 PMO 細孔壁の一部を切り出した構造に相当する対称性の高いクラスターモデル (Figure 2(a))を 構築し、その構造を最適化した。次に、3 個の bpy をシリカ骨格部位を含めてクラスターから切り出し、生じる未結 合手を水素原子で終端して BPy-PMO 細孔表面のモデルとした (Figure 2(b))。最後に、中央の bpy (細孔壁 bpy) に Ru(bpy)2を配位させて細孔表面 Ru 錯体のモデル (Figure 2(c))とし、構造を最適化した。その際、骨格部位の Si原子位置を固定し、シリカ骨格の剛直性を近似的に考慮した。計算手法としてB3LYPを用いた。基底関数系と して Ru, C, N, H原子に Lanl2dz、Si, O原子に 6-31G(d)を用いた。同レベルの計算法を用いて [Ru(bpy)3]²⁺を計算 し、構造を比較した。中心金属である Ru と Ru 第一配位圏の N原子および Ru 第二配位圏の C原子との原子間 距離を、歪みを評価するパラメータとした。全ての計算は、Gaussian09 を用いて行った。

Figure 2. Construction of the model of Ru complex on the pore-wall surface; (a) a large model with C_3 symmetry, (b) a model of pore-wall surface, (c) model of Ru complex on the pore-wall surface and (d) atom IDs.

【結果および考察】 Ru 配位 bpy に関する原子間距離 の計算値を Table 1 に示す。第一・第二配位圏ともに、 Ruと細孔壁 bpy の原子 N1, N2, C7, C8 との原子間距 離が[Ru(bpy)3]²⁺に対して増大している。[Ru(bpy)3]²⁺の bpy および細孔壁 bpy の分子構造の概念図を Figure 3 に示す。[Ru(bpy)3]²⁺では弓なりの構造なのに対し、細 孔表面 Ru 錯体では直線的な構造となっており、C7、 C8 との距離増大がより大幅となる。EXAFS により求め られた第一・第二配位圏の原子数を Table 2 に示す。 [Ru(bpy)3]²⁺に対し、細孔表面錯体では原子数が減少 する傾向があり、特に第二配位圏では顕著である。配 位原子数の減少は、配位圏にある原子のうちの幾つか が[Ru(bpy)3]²⁺に比べて Ru より遠ざかっていることを示 唆するため、実験結果は計算と定性的に整合している。 以上より、Ru 錯体の上下方向(細孔壁に対して垂直の 方向)に歪んだ分子構造が予測された。原子間距離の 増大は、歪みが細孔側配位子と細孔壁との反発的相 互作用に起因することを示唆する。この反発的相互作 用を利用し、さらに大幅な歪みを誘起する分子設計に 着手している。また、電子状態に対する歪みの影響の 理論的予測も進めており、当日併せて発表する。

【参考文献】

[1] Waki, M.; Mizoshita, N.; Tani, T.; Inagaki, S. *Angew. Chem. Int. Ed.* **2011**, 50, 11667.

[2] Waki, M.; Mizoshita, N.; Maegawa, Y.; Hasegawa, T.; Tani,
T.; Shimada, T.; Inagaki, S. *Chem. -Eur. J.* 2012, 18, 1992.

Table 1: Calculated inter-atomic disrances for the first (CS1) and second coordination sphere (CS2). Differences from those of $[Ru(bpy)_3]^{2+}$ are in parenthesis.

CS1		CS2	
inter-atomic distance (Å)		inter-atomic distance (Å)	
Ru-N1	2.129 (+0.029)	Ru-C1	2.976 (+0.008)
Ru-N2	2.134 (+0.034)	Ru-C2	2.976 (+0.008)
Ru-N3	2.109 (+0.009)	Ru-C3	2.970 (+0.002)
Ru-N4	2.101 (+0.001)	Ru-C4	2.972 (+0.004)
Ru-N5	2.099 (-0.001)	Ru-C5	2.970 (+0.002)
Ru-N6	2.108 (+0.008)	Ru-C6	2.968 (+0.000)
		Ru-C7	3.144 (+0.049)
		Ru-C8	3.150 (+0.055)
		Ru-C9	3.106 (+0.011)
		Ru-C10	3.095 (+0.000)
		Ru-C11	3.092 (-0.003)
		Ru-C12	3.107 (+0.012)

Figure 3. Schemiatic image of the molecular structure of bpy ligands in (a) $[Ru(bpy)_3]^{2+}$ and (b) the Ru complex on the pore-wall surface.

Table 2: Number of atoms in the first (CS1) and second coordination sphere (CS2) determined by EXAFS.

	$\left[Ru(bpy)_3\right]^{2+}$	Complex on the pore wall
CS1	6.0 ± 1.1	5.8 ± 0.3
CS2	11.5 ± 5.0	9.6 ± 1.4