Sapporo 基底関数:アクチノイドの内殻電子相関を考慮した

相対論的縮約型基底関数の開発

(苫駒大¹,北大院理²,室工大院工³) ○関谷 雅弘¹,野呂 武司²,古賀 俊勝³

Sapporo basis set: Relativistic segmented contraction basis sets with core-valence correlation effects for actinoid atoms

(Tomakomai Komazawa Univ.¹, Hokkaido Univ.², Muroran Institute Tech.³) • Masahiro Sekiya¹, Takeshi Noro², Toshikatsu Koga³

【序】 Sapporo 基底関数は、コンパクトでありながら高精度なセグメント型縮約 Gauss 型基 底関数 (CGTF) である。これまでに第 1-3 周期の H-Ar 原子には非相対論の DZP, TZP, QZP 基 底関数を、第 4-5 周期の K-Rn 原子については非相対論とDouglas-Kroll-Hess (DKH) 近似 [1] によって相対論の効果を考慮したDZP, TZP, QZP 基底関数を、第 6 周期の s, p, d, f ブロック原 子 Cs-Rn について相対論効果を考慮した DZP, TZP, QZP 基底関数を開発し公開している [2]。 本研究では、アクチノイド Ac-Lrの15 原子の基底関数の開発を行なった。

【開発】これまでに開発した他の原子と同様に、3次のDKH近似により相対論の効果を取り 入れ、内殻O殻(主量子数 *n*=5)と外殻P, Q 殻(*n*=6,7)の電子相関を考慮してアクチノイドの DZP, TZP, QZP の基底関数を作成した。開発の手順は次の通りである。

- 基底状態の minimal 型の Hartree-Fock (HF) 基底関数を作成する。ただし、 5f^{m+1}6d⁰ 電子配置が基底状態のときは、6d軌道に対応する関数を生成するため 5f^m6d¹ 電子配 置の最低状態のHF基底関数も作成する。
- ステップ 1. で作成した基底状態のHF 基底関数の frozen core となる1s-4s, 2p-4p, 3d, 4d, 4f CGTFおよび 比率 2.0 の even tempered GTF (初項は5s CGTFの最大の軌道指数) を使用し、 理想の原子自然軌道 (ANO) を作るための基底関数 {953²1¹¹/9531¹¹/841¹¹/ 81¹¹/1⁷/1⁶/1⁴} を作成する。
- 3. 5f^m6d¹電子配置の最低状態に対し、O 殻の電子相関を考慮した core-CI と P, Q 殻の電 子相関を考慮した val-CI をそれぞれ実行し、理想の core-ANOと val-ANO を作成す る。
- ステップ 1. で作成した minimal 型の CGTFを占有軌道とし、ステップ 3. で求めた理想的な core-ANO, val-ANO を相関軌道として、双方を最も良く再現するように、決められた個数および縮約パターンのCGTFで最適化を行う。この際、minimal型のCGTFは2個もしくは3個に分割し、correlation consistent 基底の考え方に従った個数のcore-ANOとval-ANO を使用する。

ただし、ステップ 4. の CGTF の個数および縮約パターンは、94Pu原子によるテスト計算を実行し、精度とコンパクト性の観点から表 1 のように決定した。表中の縮約パターンは、各 CGTF 関数の項数を表し、冪乗は繰り返しを意味する (例えば 16 は 111111)。

3P099

表 1: CGTF の個数と縮約パターン

基底	個数	縮約パターン
DZP	[10s8p6d4f1g]	$\{953^21^6/9531^5/8421^3/821^2/2\}$
TZP	[12s10p8d6f3g1h]	$\{953^21^8/9531^7/841^6/821^4/1^3/2\}$
QZP	[13s11p10d8f4g3h1i]	$\{953^{2}1^{9}/9531^{8}/841^{8}/81^{7}/1^{4}/1^{3}/2\}$

【原子計算の結果】 開発した基底関数を用いて各原子の 5f^{m+1}6d⁰ 電子配置と 5f^m6d¹ 電子配置からできる最低状態について core-CI と val-CI 計算を行ない、得ら れた電子相関エネルギーと ANO による電子相関エネルギーの比較を行なった。表 2 に TZP 基底を用い た 94Pu, 95Am, 96Cm, 97Bk の計算結果を示した。表中の E_{corr} は電子相関エネルギー、再現率は ANO による電子相関 エネルギーに対する比率を表わす。

表 2: TZP 基底による電子相関エネルギー

原子	電子配置	core-CI		val-CI	
		$E_{\rm corr}$ (au)	再現率	$E_{\rm corr}$ (au)	再現率
94Pu	5f66d07s2 (7F)	-0.775378	97.84%	-0.216333	99.92%
	5f ⁵ 6d ¹ 7s ² (⁷ K)	-0.729501	97.76%	-0.240569	99.91%
95Am	5f ⁷ 6d ⁰ 7s ² (⁸ S)	-0.815079	97.91%	-0.211185	99.94%
	5f ⁶ 6d ¹ 7s ² (⁸ H)	-0.771843	97.85%	-0.240919	99.91%
₉₆ Cm	5f ⁸ 6d ⁰ 7s ² (⁷ F)	-0.881303	98.24%	-0.212650	99.95%
	5f ⁷ 6d ¹ 7s ² (⁹ D)	-0.812867	98.13%	-0.238283	99.91%
97Bk	5f ⁹ 6d ⁰ 7s ² (⁶ H)	-0.935228	98.14%	-0.210675	99.99%
	5f ⁸ 6d ¹ 7s ² (⁸ H)	-0.872718	98.06%	-0.242388	99.94%

TZP における再現率は core-CI で 98% 程度、val-CI はほぼ100%である。表には示していな いが、DZP では core-CI が 94-96%、val-CI が 95-99%、QZPは core-CI、val-CI 共に99%以上 の再現率があり、全般的に良好な結果を示している。また、電子配置が異なる二つの状態に おいて core-CI や val-CI どちらの場合も再現率はほぼ等しく、この基底関数は状態間のエネ ルギー差を適切に記述できると期待できる。

分子系への応用計算の結果については当日会場で発表する。

【参考文献】

[1] Nakajima T, Hirao K (2000) J Chem Phys 113:7786; Douglas M, Kroll NM (1974) Ann Phys 82:89; Hess BA (1986) Phys Rev A 33:3742

[2] Noro T, Sekiya M, Koga T (2012) Theor Chem Acc 131:1124; Sekiya M, Noro T, Koga T, Shimazaki T (2012) Theor Chem Acc131:1247; Noro T, Sekiya M, Koga T (2013) Theor Chem Acc 132:1363; <u>http://sapporo.center.ims.ac.jp/sapporo/</u>