3C01

多核原子内包フラーレン - 紫外光電子スペクトルと構造・電子状態(X) – (愛媛大院・理工)宮崎隆文、日野照純

これまでに、我々はフラーレンケージ内に複数原子を取り込んだ内包フラーレンの紫外 光電子スペクトル(UPS)を示し、内包フラーレンの電子状態や内包原子からフラーレン ケージへの電荷移動の様子などについて報告[1]してきた。本講演では *I*_n 対称のC₈₀ケージ にSc₃C₂が内包されたフラーレンおよびLu₂やLu₂C₂がC₇₆~C₈₆に内包されたフラーレンの UPSについて報告する。さらに、これら内包フラーレンの密度汎関数(DFT)による理論 計算から得られたシュミレーションスペクトルとUPSを比較して内包クラスター構造や内 包種の酸化状態について議論する。 **C**

 $[Sc_{3}C_{2}@C_{80}]$

C80に内包されたSC3C2クラスターの構造 としてPlanar型とTrifoliate型が提案[2, 3]さ れていた。それぞれの構造を初期構造として DFT計算により得られた最適化構造を図1 に示す。構造最適化によっても初期のPlanar 型およびTrifoliate型の構造は保持された。 Trifoliate型に比べてPlanar型は生成エネルギ ーが4.16 kcal/molが高く、エネルギー的に Sc₃C₂@C₈₀はTrifoliate型クラスターを内包 していると考えられる。これら最適化構造を 元にして得られたシュミレーションスペク トルとhv=30 eV で測定されたUPSを図2 に示す。Trifoliate型のシュミレーションスペ クトルが実測を良く再現している。この結果 も内包クラスターの構造がTrifoliate型である ことを示唆している。

この**Trifoliate**型クラスターの3つの**Sc**原 子は C_2 軸から見て2つの**Sc**原子は等距離に あるが、他の**Sc**原子は少し離れている。この 原因として、 C_{80} ケージ内における**Sc**原子の

図1. Sc₃C₂@C₈₀の内包クラスターの最適構造

図 2. $Sc_3C_2@C_{80} O$ UPS とシュミレーション SP

位置が等価でないことなどが考えられる。この C_2 軸とSc原子間距離の違いのためか、電荷密度解析を行うと C_2 軸から等距離にあるSc原子と他のSc原子では電荷の違いが認められた。 一方、 I_h - C_{80} と Sc_3C_2 @ C_{80} の波動関数の比較により内包クラスターからケージへの6電子移 動が確認された。即ち、 $Sc_3C_2@C_{80}$ の電子配置は $(Sc_2)^{6+}Sc^{2+}(C_2)^{2-}C_{80}^{6-}$ であると思われる。 [Lu_2 内包フラーレン]

Lu内包フラーレンのUPSの全てにLuの4f_{7/2}と4f_{5/2}準位の2つのピー クが観測[4]されており、それらピーク位置を表1に示す。これらのピ ーク位置はLuCl₃のもの[5]に近いことから内包されたLuはほぼ+3価で あると考えられる。注目すべきことは、これらのピーク位置のケージ サイズ依存性であり、ケージサイズが大きくなるにつれて4fピークは高 結合エネルギー側にシフトする。これはケージサイズが大きくなると Lu上の電子が減少することを意味しているので、単にLu原子からケー ジに電子を与えるだけでなく、内包Lu原子とケージ間に相互作用が存 在していることを示唆している。また、同じケージにLu₂だけが内包さ れたフラーレンとLu₂C₂が内包されたフラーレン(C₈₀、C₈₂、C₈₄)を比 較してみると、C₂を内包しているフラーレンの方がLu4fピークは低結 合エネルギー側に観測される。これはC₂が存在することによりLuから の電子移動量が減少することを意味している。この現象はLu原子とC₂

間にも単なる電子移動以外の 相互作用が存在していること を示唆している。図3には Lu₂C₂を内包したフラーレン のDFT計算により求められた 最適化構造を示す。内包された Lu₂C₂の形状はC₈₄では平面構 造(178°)をとっているが、 ケージが小さくなるにつれて Lu-C₂-Luが折りたたまれた (C₈₂:127°、C₈₀:118°)構 造になっている。この内包構造 が変化する事もLu4fのピーク

変化する理由かもしれない。 [1] 宮崎 他, 分子科学討論会2012, 3D08; [2] K. Tan et al., JPC A 2006, 110, 1171, [3] Nishibori et al., JPC B 2006, 110, 19215, [4] T. Miyazaki, et al., CPL, 555 (2013) 222, [5] H. Huang, et al, 61, JPCS (2000) 1105

位置がケージサイズとともに

表1. Lu 内包 C₇₆、C₈₀、C₈₂、C₈₄、C₈₆フラーレンの Lu の 4f_{7/2} と 4f_{5/2} 準位(hv = 40 eV)

C _{2v} (*D _{2d})	Eonset	Lu4f _{7/2}	Lu4f _{5/2}
Lu ₂ @C ₇₆	0.8	9.5	10.5
$Lu_2@C_{80}$	0.6	9.6	10.9
$Lu_2C_2@C_{80}$	0.7	9.5	10.6
$Lu_2@C_{82}$	0.6	9.7	11.1
$Lu_2C_2@C_{82}$	0.9	9.4	10.8
$Lu_2@C_{84}$	0.7	9.6	11.1
$Lu_2C_2@C_{84}$	1.0	9.2	10.7
Lu ₂ @C ₈₆	1.0	10.0	11.4
Lu Metal	-	7.5	8.9
LuCl ₃	-	9.3	10.7

a) Lu₂C₂@C₈₀、b) Lu₂C₂@C₈₂、c) *Lu₂C₂@C₈₄

図3.Lu₂C₂内包フラーレンの内包クラスター構造