3A04 ヨウ化メチル、ヨウ化ウラシルの XFEL による内殻多光子多重イオン化と その後の超高速電荷移行

(東北大・多元研¹, University of Turku², 広大・院理³,理研・放射光科学総合研究 センター⁴, 京大・院理⁵, Kansas State University⁶, Synchrotron SOLIEL⁷, SARI, CAS⁸, SINAP, CAS⁹, POSTECH¹⁰, JASRI¹¹)

<u>本村 幸治</u>¹, Kukk Edwin ^{1,2}, 和田 真一^{3,4}, 永谷 清信^{4,5}, 福澤 宏宣^{1,4}, Mondal Subhendu ¹, 立花 徹也¹, 伊藤 雄太¹, 古賀 亮介³, 酒井 司⁵, 松波 健司⁵, Rudenko Artem⁶, Nicolas Christophe⁷, Liu XiaoJing⁷, Miron Catalin⁷, Zhang Yizhu⁸, Jiang Yuhai⁸, Chen Jianhui⁹, Mailam Anand ¹⁰, Kim Dong Eon ¹⁰, 登野 健介¹¹, 犬伏 雄一⁴, 初井 宇記⁴, 矢橋 牧名⁴, 八尾 誠⁵, 上田 潔^{1,4}

XFEL-induced deep inner-shell multi-photon multiple ionization and subsequent ultrafast charge migration in iodomethane and 5-iodouracil molecules

(IMRAM, Tohoku Univ.¹, Univ. of Turku², Hiroshima Univ.³, RIKEN SPring-8 Center⁴, Kyoto Univ.⁵, Kansas State Univ.⁶, Synchrotron SOLEIL⁷, SARI, CAS⁸, SINAP, CAS⁹, POSTECH¹⁰, JASRI¹¹)

K. Motomura¹, E.Kukk^{1,2}, S. Wada^{3,4}, K. Nagaya^{4,5}, H. Fukuzawa^{1,4}, S. Mondal¹, T. Tachibana¹, Y. Ito¹, R. Koga³, T. Sakai⁵, K. Matsunami⁵, A. Rudenko⁶, C. Nicolas⁷, X.-J. Liu⁷, C. Miron⁷, Y. Zhang⁸, Y. H. Jiang⁸, J. Chen⁹, A. Mailam¹⁰, D. Kim¹⁰, K. Tono¹¹, Y. Inubushi⁴, T. Hatsui⁴, M. Yabashi⁴, M. Yao⁵, and K. Ueda^{1,4}

自己増幅自発放射(SASE)型の自由電子レーザー(FEL)の発展に伴い,極 短波長領域でのレーザー光を利用することが可能となり,その波長はX線領域 まで到達している.日本にも理研播磨研究所にX線自由電子レーザー(XFEL) 施設SACLAが建設され[1],ユーザー運転が開始された.本研究ではSACLAか ら得られる光子エネルギー5.5 keVのX線レーザーパルスを集光して,ヨウ化 メチル,ヨウ化ウラシルに照射し,生成するイオンの運動量を3次元運動量分 光計を用い測定した.分子に照射された高強度のX線レーザーパルスは,多光 子吸収とオージェ過程によって,両分子に含まれるヨウ素原子を,非常に高い 価数までイオン化することが可能である.これによって生じた電荷は、速やか に分子全体に拡散し,クーロン爆発を引き起こす.測定されたフラグメントイ オンの運動量から分子の構造と電荷の移行を研究した.

実験はビームラインBL3,実験ハッチEH3にて行った.XFEL光はEH3に常設されているK-Bミラー集光システムにより集光して反応チャンバーに導入され, 集光点においてXFEL光は試料と交差する.3次元運動量分光計にはディレイラ イン位置敏感検出器が備えてあり,飛行時間だけでなく位置の情報も検出が可 能である.反応領域を通過したXFEL光はベリリウム窓を介して大気中に設置し たPINフォトダイオードに導入して,XFEL各ショットにおける光強度データを 同時に得た.

測定されたそれぞれのイオンの運動量から、単一の分子から放出されたイオン ン組を選別する事ができる.図1にヨウ化メチルのイオンの組み合わせごとの

図1:イオンの収量分布(ヨウ化メチル)

収量を示す.最も価数が大きい 電荷状態はC⁴⁺,I¹⁵⁺の組で,この 時同時に生じた水素イオンを考 慮に入れると,最大22価の分子 イオンが生じていることを意味 する.また各イオン対における ョウ素の運動エネルギーを図2 に示す.ランダムに電子を配置 して計算した運動エネルギーの 値と比べて観測されたエネルギ ーは小さい.これは電荷が非常 に高速に拡散していることを示 している.

講演では、測定されたフラグ メントイオンの価数分布、運動 エネルギー、角度分布等の実験 結果を示し、分子イオンの解離、 電荷移行について議論する.

本研究は文部科学省のX線自 由電子レーザー利用推進研究課 題およびX線自由電子レーザー 重点戦略研究課題,理化学研究 所の SACLA 利用装置提案課題と して援助を受け行われました.

参考文献

[1] T. Ishikawa *et al.*, Nature Photonics **6**, 540 (2012).