フラーレン超多価カチオン C_{60}^{q+} (q = 20-60) のクーロン爆発過程と解離種

(東北大院理¹・産総研²・東北大多元研³) ○山崎 馨¹・中村 尭祉¹・新津 直幸^{1,2}・菅野 学¹・ 上田 潔³・河野 裕彦¹

Coulomb explosions of highly charged fullerene cations C_{60}^{q+} (q = 20–60) and their fragments

(Graduate School of Science, Tohoku Univ.¹; AIST²; IMRAM, Tohoku Univ.³) •Kaoru Yamazaki¹, Takashi Nakamura¹, Naoyuki Niitsu^{1,2}, Manabu Kanno¹, Kiyoshi Ueda³, Hirohiko Kono¹

【序論】 X線自由電子レーザー(XFEL)パルスは,数+GWの高いピークパワーとフェムト秒(fs) オーダーのパルス幅をもつため、タンパク質などの巨大分子の構造決定や反応動力学イメージン グに用いる新光源として期待されている[1].しかし、XFEL パルスはその高い光強度のために試 料に含まれる原子や分子の多重イオン化[2-4]や解離[3,4]を容易に引き起こし、試料を損傷させて しまう.そこで、試料の損傷ダイナミクスの解明を目指して、XFEL パルスによる多重イオン化 およびフェムト秒解離動力学に関する実験[2-4]が窒素分子 N₂[3] や methylselenol CH₃SeH [4]など の小分子において実施され、理論計算による検証[5]やより大きな分子への拡張が進められている.

フラーレン C₆₀は, Xe²⁵⁺との衝突実験により電荷 $q \approx 60$ までの超多価カチオン C₆₀^{q+}の生成が確 認されており[6], XFEL パルスによって生成された巨大多価カチオンの解離動力学イメージング 法のテスト分子として適している.それでは, C₆₀^{q+}の解離の時間スケールや解離種は q や初期運 動エネルギー E_{in} によってどの様に変化するのであろうか. Tomita らの解離種の Kinetic energy release (KER)測定によると, C₆₀^{q+}の主要解離種は $q \approx 30$ を境に C_n⁺ (n = 2, 3,...)等の分子解離種から C⁺など原子解離種へと変化することが示唆されている[6].また Beu らは, C₆₀^{q+} (q = 0, 10, 20)にお いて E_{in} を増加させるほど小さな解離種が増加すると理論的に予想している[7].しかし Tomita ら の実験と Beu らの計算では,解離機構の E_{in} 依存性と解離機構が大きく変化するとされる $q \approx 30$ 付近における情報がそれぞれ欠落している.そこで我々は,フラーレン超多価カチオン C₆₀^{q+} (q = 0, 10, 20)

 20, 23, 28, 60)のクーロン爆発過程を on-the-fly 古典トラジェクトリ計算により調べた.計算には密度汎関数法(UB3LYP/3-21G法)と密度汎関数緊密結合法(SCC-DFTB法)[8,9]を用いた.また,初期構造はq=0の 最安定構造を仮定した(垂直遷移モデル).

【結果と考察】 π 電子が全て脱離した q = 60, $E_{in} = 0 \text{ eV}$ の場合には, C_{60}^{q+} が I_h 対称性をほ ぼ保ちながら 60 個の C⁺ に数十 fs で解離す る「均一な」クーロン爆発が観測された.ト ラジェクトリから求めた C⁺の平均 KER は

図1: q = 60, $E_{in} = 0$ eV における「均一な」クーロン爆発のトラジェクトリに沿ったポテンシャルエネルギー曲線. C-C 結合の解裂が完了した平均半径 $< R > \ge 11.6$ Åの領域でクーロンポテンシャル[10]と一致する. このクーロンポテンシャルを用いて見積もった $< R > \approx 4.2$ Å は量子化学計算に基づく値(3.6 Å)を過大評価している.

UB3LYP/3-21G 法と SCC-DFTB 法でそれぞれ 90 eV と 94 eV であり, Tomita らによる q > 50 の 実験値(約 100 eV)をほぼ再現している.なお,解離前の平均半径 <R>を図1に示す単純なク ーロンポテンシャル[10]を用いて計算すると< $R>\approx 4.2$ Å となり,量子化学計算に基づく値(3.6 Å) を 17%程度過大評価してしまう(図 1).このことから,XFEL パルスを用いた構造・反応イメージ ング実験を行う際には、単純かつ高速なクーロン爆発であっても量子化学計算に基づくポテンシ ャルエネルギー曲線を用いて解離前の構造を議論することが必要である.

HOMO から HOMO-2 までの 28π 電子が脱離した q = 28, $E_{in} = 0$ eV の場合は, 図 2 に示す様に, 静電反発により, C_{60}^{28+} が 12 個の 5 員環(電荷 2.3)に 100 fs 程度で爆発した後, C_n^+ (n = 1, 2, 3, 4) へと解離する「不均一な」爆発過程が観測

された. 主要な解離種は C⁺(12 個)および C₃⁺(9 個)であった. なお, 同様の爆発過程 は q = 23 (HOMO-2 が半占)でも観測され たが,主要解離種は鎖状の C₄⁺(4 個)とC₅⁺(5 個) であった. このことから, HOMO から HOMO-2 までの28 電子を脱離すると、C⁺ が主要解離種となる解離チャネルが開くと 考えられる. また, 初期運動エネルギーEin-が動力学に与える影響を調べるために q = 28 において Ein = 280 eV に設定した場合に は、図3に示すように解離の初期段階でケージ構造が 直接崩壊して, 主要解離種である高速(KER ≥ 40 eV) な C⁺(18 個)とその他の比較的低速(KER < 40 eV)な分 子解離種 C_n⁺ (n = 2, 3, 4)に 1 ps 以内で分解された.こ の様に, q=28 においても C_{60}^{q+} 解離動力学は初期運動 エネルギーに 強く依存する,

以上より、C₆₀⁴⁺などの電荷と初期運動エネルギーに 解離過程が大きく依存する巨大分子の構造決定や反応 動力学イメージングを行う為には、量子化学計算に基 づくポテンシャルエネルギー曲線の構築に加えて、動

図 3: q = 28, E_{in} = 280 eV における爆発 過程のスナップショット. SCC-DFTB 法による結果.

力学計算によって解離ダイナミクスや解離種の KER 分布を求め,実験的に推論された構造や解離 過程の検証を行うことが不可欠である.

【参考文献】[1] K. J. Gaffney et al., Science 2007, 316, 1444; [2] B. Rudek et al., Nature Photon. 2012, 6, 858; [3] L. Fang et al., Phys. Rev. Lett. 2012, 109, 263001; [4] B. Erk, K. Ueda et al., Phys. Rev. Lett. 2013, 110, 053003; [5] A. Fratalocchi et al., Phys. Rev. Lett. 2011, 106, 105504; [6] S. Tomita et al., Phys Rev. A 2002, 65, 053201; [7] T. A. Beu et al., Phys. Rev. B. 2009, 79, 054112; [8] M. Elstner, et al., Phys. Rev. B 1998, 58, 260; [9] C. Köhler et al., Chem. Phys. 2005, 309, 23; [10] R. Sahnoun, H. Kono et al., J. Chem. Phys. 2006, 125, 184306.