第一原理分子シミュレーションによる多孔性金属錯体の特性解析

(豊橋技術科学大学大学院¹、村田製作所²)

○杉本拓也¹、岡本晃澄¹、矢野篤志¹、檜貝信一²、若岡拓生²、栗田典之¹

Ab initio molecular simulations for porous coordination polymers

(Toyohashi University of Technology¹, Murata Manufacturing Co., Ltd.²) ()T. Sugimoto¹, A. Okamoto¹, A. Yano¹, S. Higai², T. Wakaoka² and N. Kurita¹

【はじめに】

2P134

近年、新規な多孔質材料として、多孔性金属錯体 (porous coordination polymers: PCP) が大いに 注目されている[1]。その PCP は、金属イオンに有機配位子が結合した錯体構造を基本とした巨大 な周期構造を形成しており、金属イオンと有機配位子との組み合わせを変えることにより、様々 なサイズの細孔を持つ PCP を合成することが出来る。

本研究では、PCP 中の金属イオン-有機配位子間の結合状態の制御を目指し、Al を含む PCP で ある MIL-101-NH₂について、これを構成する最小単位のクラスターの構造安定性を、密度汎関数 理論 (density functional theory: DFT) に基づく第一原理分子シミュレーションを用いて、詳細に解 析した。更に、フラグメント分子軌道 (fragment molecular orbital: FMO) 計算により、クラスター の安定化に、どのような相互作用が重要であるかを調べた。

【計算手法】

Al を含む MIL-101-NH₂ は実験で合成されているが、それを構成する有機配位子である 2-amino-1,4-benzenedicarboxylate (BDC-NH₂) 中の NH₂ 基の位置は特定されていない。そこで、ま ず、NH₂を含まない BDC から成るクラスターの安定構造を求め、BDC 中の様々な位置に NH₂を 置換した。そして、これらのクラスターの構造を最適化し、全エネルギー(Total energy: *E*_T)を比較 することにより、最安定な置換位置を決定した。さらに、NH₂の有無による Al と配位子間の相互 作用の変化を解析した。NH₂ の置換位置として、全ての NH₂ を中心の Al 側に配置した構造 (BDC-NH₂-near)、中心から離れた位置に配置した構造 (BDC-NH₂-far)、偏りなく均等に配置した構 造 (BDC-NH₂-even) の3種類を考慮し、置換位置の変化による MIL-101-NH₂の構造変化を調べた。 また、クラスター周囲のプロトン (H⁺) 濃度の変化による、クラスターの構造変化を明らかにす るため、有機配位子の Al 側の COO⁻ 部位に H⁺を付加し、DFT 計算を用い安定構造を求めた。構 造最適化計算の際、クラスターの周囲の溶媒の影響は、連続溶媒近似を用いて考慮した。溶媒と して、ジメチルホルムアミド (DMF) と水を考え、Al を含む MIL-101-NH₂の構造安定性への溶媒 の効果を検討した。

次に、MIL-101-NH₂のNH₂置換位置、及びプロトン付加により、クラスターの相対的な安定性 が変化する原因を明らかにするため、FMO計算を用い、MIL-101-NH₂中の各構成分子間の相互作 用エネルギーを求め、どの部分間の相互作用がクラスターの安定化に重要であるかを解析した。

【計算結果と考察】

真空中で最適化した3種類のクラスターの安定構造をFigure 1に、真空中及び連続溶媒を用いて最適化した各構造の $E_{\rm T}$ をTable 1に示す。Figure 1の各構造を比較すると、どの構造にも大きな違いはなく、MIL-101-NH₂の安定構造は、NH₂の置換位置には殆ど依存しないことが分かった。

また、Table 1 に示すように、プロトン付加前のクラスターでは、3 種類の構造のエネルギー差が、 最大でも 2.5 kcal/mol であり、NH₂の置換位置を変えても安定性は大きくは変化しない。但し、真 空中と溶媒中で、3 種類の構造の相対的安定性は変化する。

次に、クラスター周囲のプロトン濃度の増加により、有機配位子の COO⁻ 部位に H⁺が付加した 構造 (pro-BDC 及び pro-BDC-NH₂)を DFT 計算で最適化し、 $E_{\rm T}$ を計算した結果を Table 1 に示す。 プロトン付加前の BDC-NH₂に対する結果と比較すると、各構造の $E_{\rm T}$ は大きく異なり、中心部の Al から離れた位置で NH₂置換を行なった構造が、真空中、溶媒中のいずれでも、最安定となる。 以上の様に、有機配位子へのプロトン付加により、BDC-NH₂の安定構造は大きく影響されること が、初めて明らかになった。

Figure 1 Structures of clusters composed of BDC-NH2 and Al in vacuum optimized by DFT calculations

Cluster	vacuum		water		DMF	
	$E_{\rm T}$ (kcal/mol)	ΔE_{T}	E_{T}	$\Delta E_{\rm T}$	E_{T}	ΔE_{T}
BDC	-2940099.8	_	-2940161.3	_	-2940159.7	_
BDC-NH ₂ -near	-3148675.5	0.0	-3148747.9	2.5	-3148746.2	2.2
BDC-NH ₂ -even	-3148673.3	2.2	-3148749.1	1.2	-3148747.2	1.1
BDC-NH ₂ -far	-3148673.1	2.3	-3148750.3	0.0	-3148748.4	0.0
pro-BDC	-2940754.6	—	-2941612.6	—	-2941592.8	—
pro-BDC-NH ₂ -near	-3149361.4	44.4	-3150227.9	13.2	-3150207.7	14.6
pro-BDC-NH ₂ -even	-3149381.6	24.2	-3150233.7	7.3	-3150214.6	7.7
pro-BDC-NH ₂ -far	-3149405.8	0.0	-3150241.0	0.0	-3150222.3	0.0

TT 1 1 TT (1 '	$(\mathbf{\Gamma})$			4 1	DME
Table 1 Total energies	$(E_{\rm T})$) for clusters in	vacuum,	water and	DMF

【参考文献】

[1] for example, Jeong Yong L. et al., Chem. Soc. Rev. 38, 1450 (2009).