1P010

O₂/CO₂/NO 系のスーパーオキシド化学:ONOOCO₂の生成と構造

(東大院総合)<u>中西隆造</u>,永田 敬

Superoxide chemistry in $O_2/CO_2/NO$ system:

Formation and structure of ONOOCO₂⁻

(Univ. of Tokyo) R. Nakanishi and T. Nagata

【序】スーパーオキシドO₂⁻とNOの反応で生成するperoxy型負イオンONOO⁻は、生体内反応では強力な酸化剤・ニトロ化剤として働く活性種の一つである。生体内でONOO⁻は周囲に遍在するCO₂と速やかに反応し、NO₂+ CO₃⁻(ラジカル生成)あるいはNO₃⁻ + CO₂(CO₂を触媒としたONOO⁻異性化)に至ることが知られている[1]. この反応はONOO⁻よりもさらに酸化毒性の高いCO₃⁻ラジカルを生成するため、病理学的な観点からも研究対象となっている[2].

反応速度論的な研究からは、反応中間体 ONOOCO₂つ生成が示唆されており、図1に示す ようなスキームで反応が進むとされている[1]. このスキームではONOOCO₂が反応機構を支配 する重要な中間体であるが、これまで実験的に観 測された例はない.本研究では、気相クラスター 反応を利用してONOOCO₂を生成し、光電子分 光法とab initio計算によって電子構造・幾何構造 に関する情報を得ることを目的とした。

【実験・計算】 $CO_4^-(CO_2)_n$ クラスターとNOの衝突反応を利用してONOOCO2⁻を生成した. CO_4^- とNOの反応でONOO⁻が生成することから[3], この反応をクラスター内で進行させることで, 過渡的に生成するONOO⁻をさらに周囲のCO2と反応させた.

 $CO_{4}^{-}(CO_{2})_{n} + NO \rightarrow [CO_{2} \cdot ONOO^{-}(CO_{2})_{n}]^{*} \rightarrow [ONOOCO_{2}^{-}(CO_{2})_{n}]^{*} \rightarrow [ONOOCO_{2}^{-}(CO_{2})_{m}] + (n+1-m)CO_{2} \quad (1)$

実験では、 $O_2(8\%)/CO_2(2\%)/Ar 混合ガスの超音$ $速ジェットを電子衝撃イオン化して <math>CO_4^-(CO_2)_n$ を生成し、ジェット外から NO を導入して得ら れた生成物を質量選別した後、204 nm(6.07 eV) レーザー光で光電子スペクトルを測定した.また MP2/6-311+G(d)計算で生成物の構造推定を行 い、エネルギー計算には CCSD(T)/6-311+G(d) を用いた.

【結果と考察】図2にNOガス導入前後の質量ス ペクトルを示す.NO導入によってCO₄⁻(CO₂)_n が減少し,式量[NO₃(CO₂)_m],[CO₃(CO₂)_k]に相当 するイオン種が生成した.

生成物[NO₃]の光電子スペクトルには 3.22 eV に極大を持つ幅広いバンドが観測された(図 3(a)). *ab initio*計算との比較から,スペクトルキ ャリアは ONOO⁻(図 4(a))と結論した.ONOO⁻ の *cis-trans* 異性体は VDE が近接しているため,

図 2. NO ガス導入前(a),導入後(b)の質量ス ペクトル

スペクトルからは区別できない. $[NO_3]$ として硝酸イオ ン $NO_3^-(^1A', D_{3h})$ 構造も考え得るが、 NO_3^- に対応する光 電子バンドは観測されなかった.

生成物[NO₃(CO₂)]⁻の光電子スペクトルには 5 eV 以上 のエネルギー領域にバンドが観測された(図 3(b)). バ ンド形状は 2 つのガウス関数の重ね合わせで再現する ことができ,それぞれの極大位置は 5.39,5.76 eV であっ た. *ab initio* 計算からは 6 種類の局所安定構造が得られ, このうち実測に近い VDE 計算値を与えるのは ONOOCO₂ 骨格を持つ分子負イオンであった(図 4(b)). VDE 計算値と実測値の比較から,バンド I を *cis* 型負イ オン, II を *trans* 型と帰属した.スペクトルにはバンド I, II に加えて図中矢印で示した場所に弱いバンドが観測 された.これはイオン-分子錯体 NO₃-CO₂(VDE 計算値: 4.32 eV)に帰属した.

生成物[CO₃(CO₂)_{0,1}]からは光電子脱離は観測されな かったが、355 nm 光励起による O⁻フラグメントの生成 が確認された.この光解離過程は CO₃⁻ラジカルに特徴 的であること[4]から、この生成物を CO₃⁻(CO₂)_kと同定 した.以上の結果から、反応過程(1)でクラスター内に生 成した ONOOCO₂⁻からは、①CO₂ 蒸発のエネルギー緩 和による安定化、②OO 結合の開裂による CO₃⁻生成とい う二つの過程が競合的に進行すると結論した.

ONOOCO₂⁻の安定化エネルギーは、例えば cis 型の場 合, cis-ONOO⁻(¹A')+CO₂(¹A₁)解離限界に対して 0.85 eV, NO₂(²A₁)+CO₃⁻(²A₂')解離限界に対して 0.41 eV と見積も られた.後者の値はペルオキシド化合物の典型的な OO 結合エネルギー値(>1 eV)よりも特異的に小さい値であ る.ONOO⁻と CO₂から ONOOCO₂⁻が生成する際に生じ る発熱のエネルギーが、OO 結合エネルギーを大きく上 回っており、ONOOCO₂⁻の生成を介して CO₃⁻が生成し ているとした上述の結論と矛盾しない.分子軌道の形状 から考えると、ONOOCO₂⁻の second HOMO が NO₂ と CO₃⁻それぞれの SOMO から構成される結合性軌道に相 当しており、NO₂⁻⁻CO₃⁻ラジカル対生成は、この軌道を 占有している電子対を分け合うホモリシス開裂とみな

図 4. *ab initio* 計算による(a)ONOO⁻ (¹A', C_s), (b)ONOOCO₂⁻(¹A, C_1)の安 定構造. ΔE は *cis* 型に対する *trans* 型の相対エネルギー.

すことができる。今後はさらに計算を進め、軌道の詳細な相関関係や ONOOCO₂-の生成・解 離過程におけるエネルギー障壁の有無などを調べる予定である。

水溶液中では、 $ONOOCO_2$ から生成した NO_2 … CO_3 ラジカル対の約 70%が溶媒かご内での 再会合反応を経て NO_3 + CO_2 に至るとされている (図 1). 今回の実験では、 CO_2 溶媒かごが 十分に形成されていなかったために、 NO_3 をイオン芯とする生成物がほとんど観測されなか ったと推測される.

[1] S. Goldstein, J. Lind, G. Merényi, *Chem. Rev.* 105 2457 (2005). [2] P. Pacher, J.S. Beckman, L. Liaudet, *Physiol. Rev.* 87 315 (2007). [3] A.A. Viggiano, A.J. Midey, A. Ehlerding, *Int. J. Mass Spec.* 255 65 (2006).
[4] G.P. Smith, L.C. Lee, J.T. Moseley, *J. Chem. Phys.* 71 4034 (1979).