1P006

HO2 ラジカルの回転遷移に対する希ガスの衝突幅依存性

(東工大院理工)栗林康太、〇溝口麻雄、金森英人

Dependence of rotational linewidth of HO₂ radical by collisions with rare gases (Tokyo Institute of Technology) K. Kuribayashi, <u>A. Mizoguchi</u>, and H. Kanamori

【序】スペクトル線の圧力幅係数は分子間相互作用と密接に関係しており、古くからその関係についての定量的な理解を目指した研究が進められてきた[1]。また、近年では衛星からの高分解能分光リモートセンシングによる大気微量物質の高度分布決定のために必要となる圧力幅係数を実験室で測定する研究が進められている[2]。それらの微量物質の中でも、大気化学反応過程で重要な働きを担っているラジカル等の化学的短寿命種の圧力幅係数を精度良く決定することガ強く求められている。しかしながら、このような短寿命種の吸収強度は極めて小さいため、実験室分光では感度を向上させるために周波数変調法を用いるのが一般的である。ただし、周波数変調分光法では微分演算が装置関数として観測スペクトルに重畳されるため、圧力線幅を高精度に決定するためにはその影響を取り除く必要があった。Pickettはこの問題に対して、緩衝ガスを導入した時のスペクトル波形を、しない時の参照スペクトルに衝突広がりを表す Lorentz 関数を畳み込み積分した波形でフィッティングすることによって、装置関数の影響を取り除いた解析が可能であることを示した[3]。我々はこの方法が参照スペクトルにラジカル分子特有の超微細構造がある場合にもそのまま適用できることに注目し、Zeeman変調法と組み合わせることによって、水銀光増感反応で生成した HO₂ ラジカルの N₂と O₂ に対するサブミリ波領域の圧力幅係数を決定した[4]。

一方、純回転遷移に対するより高精 度な信号測定に伴い、緩衝ガスの衝突 による圧力広がりだけでなく、 Gaussian線幅の狭帯化(narrowing)の影 響も同時に観測されるようになった [5,6]。しかし、これまでに観測された 分子はCOやO3等の強い信号強度が得 られる安定分子のみであり、測定には 直接吸収や装置関数によるスペクト ルの歪みが少ないチョッパー変調等、 検出感度的には劣る手法である。

今回、我々は HO_2 ラジカルの純回転 遷移 $N_{KaKc} = 10_{010} - 10_{19}$, J = 10.5 - 10.5に対して緩衝ガスとして最も単純な 希ガス(Rg)を用いた圧力幅係数の決定 を試みた。この際、より高感度な Zeeman 変調法を用い、装置関数を取

図 1. HO₂ ($N_{KaKc} = 10_{010} - 10_{19}, J = 10.5 - 10.5$)スペクトル

に対する希ガス(Rg)の圧力幅依存性

図中のプロット(黒)は Pickett 法による解析から得られ た各緩衝ガスの圧力下での圧力幅。赤線は誤差を重みとし て線形関数にフィットしたもの。 り除いた解析を行うことで、Rgの衝突による narrowingの影響を解明することを試みた。 【実験および結果】サンプルガス H₂/O₂(各 10mTorr)中に同伴した微量の Hg 蒸気を用いた水 銀光増感反応により HO₂を生成し、長さ 2m のセル中をゆっくりフローする条件下で、位相 安定化した BWO 光源を用いて吸収測定した。微弱な吸収信号を高感度で検出するために、 セルの外側に巻いたソレノイドコイルを用いた Zeeman 変調法を採用した[4]。この測定法は マイクロ波の干渉効果によるベースラインの歪みの影響を抑制するので、スペクトルフィッ

ティング時に必要となる S/N を実質 的に向上させることができる優れた 手法である。図1に示すように、緩 衝ガスである Rg を0(参照スペクト ル)から 500mTorr 程度まで変化させ たときのスペクトル線幅の広がりを Pickett 法で解析することによって圧 力幅(圧力幅は半値半幅)を求め、 圧力幅係数(表1)を決定した。

表 1. HO₂ と CO の圧力幅係数の比較

	lpha/Å ³	γ(HO ₂) /MHz/Torr	γ(CO) /MHz/Torr ^b
He	0.21	1.678(29)	1.662(31)
Ne	0.41	1.415(31)	1.383(47)
Ar	1.64	2.057(8)	1.917(31)
Kr	2.48	1.968(8)	1.935(31)
Xe	4.02	$[1.88(12)]^{a}$	2.307(45)

^a a tentative value, ^b Ref.[6]

【考察】図1に示すように、各 Rg に対するスペクトルの圧力幅依存性は Xe を除いて、すべ て原点を通る直線上にあり、従来の解析と同様に圧力幅係数を決定が可能と考えられる。一 方、Xe に対しては低圧領域において直線から大きなずれを示した。原因としては Dicke narrowing の影響が考えられるため、Gaussian 幅の narrowing を考慮した Galatry 線形を用いた CO-Rg 系の結果と比較する[5]。表 1 に示すように、双極子モーメントは HO₂ (2.1D)と CO (0.1D)で 20 倍、分極率の値も He と Kr では大きく異なるにもかかわらず、圧力幅係数は数% しか増加していない。このことは Rg との衝突は相互作用ポテンシャルの近距離反発項が支配 する剛体球モデルに近いことを意味する。一方、CO に対する HO₂ の圧力幅係数の数%の増 加分は相互作用ポテンシャルの引力項における HO₂の双極子モーメントの大きさを反映した ものと解釈できる。図 2 に Rg の分極率に対して圧力幅係数の比γ (HO₂) / γ (CO)を示す。但し、 質量の違いによる衝突頻度を補正するために、(換算質量)^{1/2} で割った圧力幅係数γ を用いた。

He, Ne, Ar に対する比は分極率と共に僅かに増加 しているが、Kr では減少し1より小さく、Xe で はさらに大きく乖離している。これは Pickett 法に よる Gaussian 幅の narrowing を無視した解析が一 因と考えられ、その影響が小さいと考えられた Kr に対する圧力幅係数でも無視できないことが予見 された。現在、検出手法に対する装置関数の考察 を深め、Pickett 法に代わるより高精度な圧力幅係 数の決定手法の確立を目指している。

[1] C. H. Townes and A. L. Schowlow, "Microwave

1975,

Dover,

Spectroscopy",

図 2. Rg の分極率に対するγ(HO₂) / γ(CO)比 表1に示された圧力幅係数γを衝突頻度で補正 した値γを用いた。

JEM/JMILES Mission Plan, Ver. 2.1. NASDA/CRL, November 2002, [3] H. M. Pickett, *Appl. Opt.* **19**, 2745 (1980), [4] A. Mizoguchi, et. al., *JQSRT*, **113**, 279 (2012), [5] K. M. T. Yamada and H. Abe, *J. Mol. Spectrosc.* **217**, 87 (2003), [6] F. Rohart, et. al., *J. Mol. Spectrosc.* **251**, 282 (2008)

[2]NASDA.