1B20

PVPA-イミダゾール複合体におけるイミダゾールのダイナミクスとプロトン伝導性の解析 (金沢大院・自然)〇岩崎 彩乃、海山 剛史、大橋 竜太郎、井田 朋智、水野 元博

Analysis of dynamics of imidazole and proton conductivity in PVPA – imidazole aggregate

(Graduate School of Natural Science and Technology, Kanazawa University)

OAyano Iwasaki, Tsuyoshi Umiyama, Ryutaro Ohashi, Tomonori Ida, Motohiro Mizuno

【序論】

近年、イミダゾールを用いた固体高プロトン伝導物質が数多く開発されている。ポリビニルホスホン酸 (PVPA) とイミダゾール (Im)の複合体 PVPA $x \operatorname{Im}(\operatorname{ccc}, x \operatorname{tlad})$ の繰り返しユニットに対する Im のモル比を表す。)は Im の割合が増えるにつれてプロトン伝導度が増大し、x=2では、400 K で約5×10³ S cm⁻¹の電気伝導度を示す^[1]。

PVPAxImでは、ホスホン酸 - Im間およびIm - Im間の水素結合を介した Grotthuss 機構によってプロトンが伝導し、Imの分子運動は効率の良いプロ トン伝導に強く関与していると考えられる。しかしながら、PVPAxIm中に おけるIm分子のどのような運動がプロトン伝導に関与しているかは解明さ

れていない。そこで本研究では、固体²H NMR を用いて PVPA *x* Im中の Im の分子運動のモードや 速さを解析し、Im の分子運動とプロトン伝導の関係性を考察した。

【実験】

試料は、炭素に結合した水素のみを重水素化した Im- d_3 および窒素に結合した水素のみを重水 素化した Im- d_1 を用い、x = 2として PVPA 2 Im を調整した。なお、Im- d_1 の試料については PVPA も重水で再結晶し重水素化処理をしている。²H NMR の測定には分光器 JEOL ECA-300 を用いて 共鳴周波数 45.282 MHz で行った。²H NMR スペクトルの測定には四極子エコー法(QE)を用い た。

【結果・考察】

Fig.2 に PVPA 2 Im- d_3 および PVPA 2 Im- d_1 の²H NMR スペクトルの温度変化を示す。反転回復法 による部分緩和スペクトルの測定より、PVPA 2 Im- d_3 は単一成分のスペクトルであるが、PVPA 2 Im- d_1 のスペクトルは0 kHz 付近のシャープな成分とブロードな成分の重ね合わせであることが分 かった。さらに、スペクトルの線形解析により、PVPA 2 Im- d_1 のブロードな成分は、四極子結合 定数 e^2qQ/h と非対称パラメータ η が 160 kHz、0.1 の成分と e^2qQ/h と η が 120 kHz、0 の成分から なっていることが分かった。Fig.3 にホスホン酸部分を重水素化した PVPA の 170 K での ²H NMR スペクトルを示す。スペクトルはブロードな成分とシャープな成分からなり、ブロードな成分の e^2qQ/h と η は 160 kHz、0.07 であった。そこで、PVPA 2 Im- d_1 の 160 kHz、0.1 の成分は PVPA のホ スホン酸部分、120 kHz、0 の成分は Im- d_1 部分と帰属される。PVPA 2 Im- d_3 の ²H NMR スペクト ルの温度変化は Im 分子の等方回転運動で支配されており、スペクトルの線形解析より各温度での Im 分子の等方回転運動の速さ k_{rot} を見積もることができた(Fig.2)。得られた k_{rot} から Im 分子の 等方回転運動の活性化エネルギー E_a を見積もると 64.2 kJ mol⁻¹となった。

PVPA 2 Im-d₁のスペクトルはシャープな成分(1)、PVPA のホスホン酸部分の成分(2)および Im-d₁ 部分の成分(3)の足し合わせで解析を行った (Fig.4)。各温度のスペクトルの解析において、成分(3) には PVPA 2 Im-d₃の²H NMR スペクトルの線形解析より得た k_{rot}を用いた。成分(2)は分子運動の 存在しないリジッドな状態を仮定した。PVPA 2 Im-d₁のスペクトルの解析により得られた、成分(1) (2) (3)の存在比の温度変化を Fig.5 に示す。温度上昇に伴い、成分(2)の存在比が減少しシャープな 成分(1)の存在比が増大した。成分(1)はプロトン移動に直接関与している成分と考えられる。Im 分 子の等方回転運動が速くなるにつれて、プロトン移動を起こす成分が増大していることが予想さ れる。

【参考文献】

[1] F. Sevil, A. Bozkurt, J. Phys. Chem. Solids 65 (2004) 1659.