4P-116

制約密度汎関数理論を用いた PPV の三重項電子移動過程の解析 (筑波大院・化)<u>相川小春</u>, 鞆津 典夫, 守橋 健二

Constrained DFT Calculation on Triplet Electron Transfer Process of PPV (Univ. of Tsukuba) AIKAWA Koharu, TOMOTSU Norio, MORIHASHI Kenji

【序】

Cao らは有機 EL 材料の一つである poly(*para*-phenylenevinylene) (図 1)の誘導体の electroluminescence(EL) と photoluminescence(PL) 量子収率

の比 QE(EL)/QE(PL) が 50%となることを示した¹. これに 対し, Shuai らは反応断面積の観点から説明を行った². 我々 はこの現象を電子移動過程の速度定数の観点から説明する ことを目標とし, PPV の三重項電子移動過程の解析を Constrained DFT³を用いて行った.

【計算対象】

PPV はポリマーなのでモデル系として *trans*-stilbene (図 2), Oligo-PV の三量体

(図 3; 以下 OPV3),及び OPV3 の誘導体として両端にメチル基を置換したもの(図 4;以下 dimethyl-OPV3)を用いた.

【計算手法】

上記の分子をそれぞれ,基底状態,三重項最 低励起状態,アニオンラジカル,カチオンラ ジカルの電子状態で B3LYP/6-31G(d)で構造 最適化を行った.

この構造を以下のような組み合わせでダイ マーとして配置し,計算を行った.一つは始

図 4: dimethyl-OPV3

状態の電荷分離状態として D⁻-A⁺, もう一つは終状態のエキシトン状態として ¹D-³A* の組み合わせである(D, A は計算上では同じ分子).電子状態についてもそれぞれの 構造において始状態,終状態の電子状態を再現するため CDFT を用いそれぞれ電荷, スピンに制約を 2.0 だけ適用した.

また,速度定数については以上のダイマー計算の結果を用いて Marcus 理論に基づく 四点法で求めた.

【ダイマーの分子配向】

三つのモデル分子それぞれを平行に分子平面に対して 4 Å 離して配置した. また,

trans-stilbene についてはそれ以外の配向についても比較するため、ドナー分子につい て慣性主軸に沿って傾け・ずれをつくり計算を行った.そのほか、dimethyl-OPV3 に ついては分子の結晶構造から傾きを持つ配向を抜き出し、そこにモノマー構造をはめ たダイマーについて計算を行った.

【結果】

平行配置については以下の表 1のような結果となった.

系	ΔG° (kJ/mol)	λ (kJ/mol)	<i>H_{ab}</i> (kJ/mol)	<i>k</i> _{et} (/s)
trans-stilbene	-228.2	31.59	-19.33	3.078×10^{-39}
OPV3	-162.7	25.15	-19.40	1.561×10^{-18}
dimethyl-OPV3	-399.6	253.4	-22.38	1.125×10^{12}

表 1: 平行配置の各パラメータ

trans-stilbene, OPV3 では速度定数が非常に小さいが, dimethyl-OPV3 はそれらに比べ かなり大きくなっている. また, *trans*-stilbene, OPV3 の二つで比較すると OPV3 のほ うが 10^{20} ほども大きくなった.

また,慣性主軸に沿って傾け・ずれをつけた *trans*-stilbene はすべての結果で平行配置 以下の速度定数となった.その中での傾向では,傾きのみの場合 30°,45°,60°で比較す ると 45°が最も ΔG °と λ の差が小さくなり速度定数が大きくなるという結果となった. また,45°の傾斜をつけた上で分子の伸長方向にずれをつけた場合, ΔG °はずれが大き くなるほど小さくなるが λ はほとんど変化しなかった.また 45°の傾斜をつけた上で分 子間距離に当たる垂直方向のずれを作った場合,近づけるほど ΔG °は大きくなり λ はほ とんど変化しなかった.

結晶構造にはめて計算した dimethyl-OPV3 の結果は以下の表 2 のようになった. T1, T2 は結晶構造中の斜め配向のパターンである.

系	ΔG° (kJ/mol)	λ (kJ/mol)	<i>H_{ab}</i> (kJ/mol)	<i>k</i> _{et} (/s)
T1	-81.74	24.05	25.03	1.968×10^{9}
T2	-331.4	26.08	-11.20	1.225×10^{-141}
Parallel	-399.6	253.4	-22.38	1.125×10^{12}

表 2: 結晶構造の配向での各パラメータ

T1 ダイマーと前述の平行配置ではともに速度定数がでているが、 T1 ダイマーでは ΔG° が小さく、平行配置では λ が大きいために速度定数が大きくなっている.

¹ Y. Cao *et al.*, *Nature* **397**, 414 (1999)

² Z. Shuai et al., Phys. Rev. Lett. 84, 131 (2000)

³ Q. Wu and T. Van Voorhis, *Phys. Rev. A* **72**, 024502 (2005)