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I. Introduction

One of the most successful applications of molecular quantum mechanics is the reproduction and prediction of
molecular conformation. However, it’s still a grand challenge to perform the geometry optimization on large system
in practices. Due to a large number of atoms, the standard ab initio calculations are beyond the computational reach.
Currently, some fragment-based methods have been successfully proposed and developed to calculate large system
within a reasonable cost, for example: divide and conquer (DC), elongation method (ELG)? fragment molecular
orbitals (FMO)®and systematic fragmentation method (SFM)*. Despite the complicate interactions of large system,
it’s very difficult to locate the equilibrium structure. Here we present the implementation of geometry optimization
based on the elongation method, which is famous for its high accuracy and efficiency.

I1. Theoretical approach
A. Elongation method
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regions are obtained. Then, one attacking unit (C) is added to the  Fjg 1 The flowchart of elongation method
chain propagation point for the next ELG step. Because of the

negligible interactions between A and C, only B and C will be included in the ELG SCF calculations. After the ELG
HF-SCF converges, the CMOs of B and C regions will be localized again to form a new frozen region (RLMOs B”)
and a new active region (RLMOs C”). Then a new attacking unit (D) is added to repeat the above procedures until
the desired length is reached. The important feature of the ELG method is that the equations during SCF are solved
only for small subunits instead of the whole system, and the calculations of two-electron repulsion integrals (ERISs)
between A and M can be partly omitted by cutoff technique.

\L Elongation localization

B. Elongation geometry optimization

In the framework of HF calculation, the first derivative (gradient) of total energy (E) with respect to the nuclear
coordinate X, at atomic orbitals basis, can be written as:
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where (uv||o) denotes two-electron integral, D is the density matrix, H** and S correspond to the core Hamiltonian
and overlap matrices of system, respectively. The nuclear-nuclear repulsion is defined by V. The energy-weighted



density matrix Q of conventional method is defined asQ,, = ZF/Z n;&;C,;Cyi, where n is the matrix of occupancy
number (density matrix in MO representation). In the ELG method, the equations during SCF are solved only for
active subspaces defined by B and M fragments. Therefore, the non-diagonal ; LMO is employed in the ELG -OPT
method. As the coefficients of the Whole system CASy; consist of CAMO(coeffluents of frozen part, localized by the
ELG localization procedure) and Cy (coefficients of active region and attacking unit, transformed from CX\ after
the ELG SCF calculation). Therefore the energy-weighted density matrix Q of the ELG-HF-OPT method in atomlc
basis can be rewritten asQ,, = Zf;/ 2 n;g;;C,iCy;. Because of the boundary effects between A and BM arisen by the
tails after the ELG localization procedure, the coordinates of the one unit of the BM region, which is the closest to
the frozen region, is fixed in the gradient calculation to reduce these effects.

I11. Results and discussion

A. Non-bonding model system: (HF) nz4g

The linear poly-hydrogen fluoride (poly-HF) molecules are optimized by both elongation and conventional
restricted Hartree-Fork method (RHF) with different basis sets. The energy differences AE (AE=E®o"910n_eonventionaly
of STO-3G, 6-31G and 6-31G(d,p) basis sets are -4.49x107, 9.09x10° and -3.26x10"° Hartree/atom, respectively.
The negative values means the ELG-OPT locates an even lower ground state than conventional results. It indicates
that for a flat energy potential surface of system, like linear poly-HF molecules, ELG-OPT may produce a more
promising candidate for the most stable geometry.
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Compared to conventional results, it indicates that
the ELG-OPT can well reproduce the calculations and may locate a more stable structure than conventional one.
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