テトラシアニド金属錯体とメチルビオロゲンからなる結晶の吸収スペクトル解析 (立教大理¹,お茶大理²) <u>小嶋亮平¹,森寛敏²,望月祐志¹,上之原和佳¹,松下信之¹</u>

Spectral analysis of crystals composed of $[M(CN)_4]^{2-}$ {M=Pt,Pd,Ni} and Methylviologen (Rikkyo University¹, Ochanomizu University²)

Ryohei Kojima¹, Hirotoshi Mori², Yuji Mochizuki¹, Waka Uenohara¹, Nobuyuki Matsushita¹

【序】テトラシアニド金属錯体([*M*(CN)₄]² {*M*=Pt,Pd,Ni})及びメチルビオロゲン(MV²⁺)は、Ni 錯体を除き孤立系においては可視領域に吸収スペクトルが存在しない、しかし、無色であるPt・ Pd 錯体とメチルビオロゲンを組み合わせることで、有色結晶が得られることが報告されている。 また、同一構造ながら、色が異なる結晶が得られる場合があることも明らかとなっている。しか し、同一構造錯体が異なる光学的特性を示す原因は解明されておらず、我々は各種テトラシアニ ド金属錯体とメチルビオロゲンを組み合わせた結晶について励起状態計算を行い色の発現機構の 理論的解析を行った。この要旨では、Pt 錯体の場合についてまとめる。

【計算】単体(孤立系)である[*M*(CN)₄]²-{*M*=Pt,Pd,Ni}, MV²+, MV⁺、及び一対の[*M*(CN)₄]²・ と MV²+の系([*M*(CN)₄]²·+MV²+)を系統的に計算した。構造は[*M*(CN)₄]²·では LC-BLYP で構造最 適化し、MV²⁺, MV⁺, [*M*(CN)₄]²·+MV²+では MV[*M*(CN)₄]結晶のX線結晶構造解析で得られた実 験値を用いた。励起状態計算はSF/SO-CASPT2(スピン軌道相互作用の有無)で行い、基底関数 は、Pt,Pd,Ni は内殻省略近似基底の一種である MCPtzp を使用し、それ以外の原子は cc-pVDZ を用いた。また、アニオンである[*M*(CN)₄]²·では電子の広がりを考慮し、diffuse 関数を含んだ基 底(MCPtzp+,aug-cc-pVDZ)を使用した。

【結果と考察】

• $[Pt(CN)_4]^{2-}$

Fig.1 に[Pt(CN)₄]²の8電子5軌道の活性空間を用いた計 算結果と吸収スペクトルを重ねた図を示す。 計算から得られた理論スペクトルと実験の吸収スペク トルの波長領域が一致していることがわかる。この理論 スペクトルについて解析を行うと、スピン軌道相互作用 によって軌道が混合し各状態を構成していることがわ かった。

• $[Pt(CN)_4]^{2-}+MV^{2+}$

Fig.2 に MV [Pt(CN)₄]の単結晶偏光吸収スペクトル と [Pt(CN)₄]²⁻+MV²⁺の SO-CASPT2 計算結果との比較を 示す。また、Table.2 に SO-CASPT2 の解析結果、

Table.3 に SO-CASPT2 の状態を構成する SF-CASPT2 の波動関数キャラクターを示した。 SF-CASPT2 の各番号は SO-CASPT2 の各状態を構成する波動関数キャラクターに対応している。

Fig.2 から理論スペクトルと吸収スペクト ル(a)の立ち上がりと一致していることが わかり、可視領域で得られている理論スペ クトルの解析を行うと、吸収スペクトルは [Pt(CN)4]²(供与体)から MV²⁺(受容体) への電荷移動励起であることがわかった。 また、同一構造ながら色が異なる結晶につ いては MV+で可視領域での吸収スペクト ルを示す状態遷移で説明可能である。

(a) E ∥ DA カラム(b) E ⊥DA カラ	ム
--	---

Table.1	SO	CASE	T2	計算結果
---------	----	------	----	------

ev	CIII	11111	1			(用判狱	イヤノ	ノグニ			
0.00	0		1	100%								
2.74	22070	453	6.11E-04 6	78%	7	7%	3	7%	8	3%	2	3%
2.74	22086	453	6.59E-06 6	80%	7	11%	8	8%				
2.74	22134	452	5.65E-03 6	81%	4	7%	8	5%	7	4%	3	2%
2.80	22620	442	1.72E-02 2	73%	7	15%	8	9%	6	2%		
3.00	24212	413	4.68E-03 7	36%	8	25%	3	22%	9	13%	4	2%
3.01	24246	413	2.40E-03 8	38%	7	34%	9	14%	3	11%	5	1%
3.01	24310	411	2.18E-02 7	45%	8	20%	4	19%	9	9%	5	5%
3.03	24457	409	1.16E-02 8	37%	7	18%	4	16%	9	15%	3	10%
3.42	27612	362	3.75E-03 7	33%	9	33%	3	9%	8	8%	6	7%
3.43	27670	361	8.74E-03 9	34%	7	31%	8	17%	4	9%	6	7%
3.43	27697	361	1.79E-03 9	36%	7	29%	8	20%	4	7%	2	5%
3.48	28035	357	7.69E-04 8	34%	3	30%	6	15%	9	8%	5	6%
3.53	28463	351	1.49E-03 9	47%	8	29%	6	11%	7	10%	4	2%
3.53	28491	351	1.90E-02 9	46%	4	25%	6	11%	8	9%	7	8%
3.54	28568	350	1.10E-02 9	41%	8	25%	2	13%	7	12%	3	4%
3.57	28828	347	4.53E-04 5	78%	8	12%	7	4%	6	3%	3	2%

Table.2 SF-CASPT2 波動関数キャラクター

			波動関数キャ	ラクター		
1	22220000	93%	22u2000d	2%	222u00d0	2%
2	22u200d0	96%	222u00d0	2%	22u2000d	1%
3	2u2200d0	90%	u22200d0	9%		
4	222u00d0	94%	22u200d0	3%	22220000	1%
5	u22200d0	90%	2u2200d0	9%	222u00d0	1%
6	22u200u0	99%				
7	2u2200u0	78%	u22200u0	13%	222u00u0	9%
8	222u00u0	90%	2u2200u0	9%	u22200u0	1%
9	u22200u0	86%	2u2200u0	13%		
10	22u2000u	83%	22u20u00	17%		

※赤は1重項状態
黒は3重項状態
u,d,2はαスピン,β
スピン,電子対

¹C. D. Cowman, H. B. Gray, *Inorg Chem.*, 15, 11, (1976), 2823.

² D. Shiota, N. Matsushita Chem. Lett. 37,(2008),399.