2D14

Reactivity of cationic niobium carbide clusters with N_2O (The University of Tokyo) <u>Mushtaq Sobhan</u>, Ken Miyajima, Fumitaka Mafune

Introduction

In the last two decades metal carbide clusters are extensively studied due to the fact that they can catalyse reactions in a manner similar to platinum group metals (Pt, Ru, Rh, Pd, Os and Ir), which is explained as being due to modification of the surface electronic properties by the addition of carbon. Niobium carbide clusters has been investigated by several groups using methane gas as a carbon source. It can also be prepared in the gas phase by the double laser vaporization. Using this procedure the reactivity of niobium carbide (NbC) clusters has been previously investigated with H₂ gas by Miyajima et al. [1]. In that study the authors found that Nb_nC_m clusters with composition ratio n:m=1:5 were relatively inert to H₂ gas. To further investigate the composition dependent reactivity of Nb_nC_m⁺ clusters we measured the reactivity of Nb_nC_m⁺ clusters with N₂O gas.

Experiment

Niobium carbide clusters were formed in a supersonic double laser ablation source coupled to a reflectron-equipped time-of-flight mass spectrometer. The niobium and graphite rods were irradiated with the focused laser pulses (~10 mJ/pulse) at a wavelength of 532 nm from Quanta Ray GCR-170 and Continuum Surelite II Nd³⁺:YAG lasers for generating the plasma. The evaporated niobium atoms and carbon atoms were cooled in the gas phase by the He gas (>99.99995%), forming Nb_nC_m⁺ clusters. The clusters then entered into the collision cell filled with N₂O gas. The stagnation pressure of He carrier gas used was 5 atm or 9 atm which affects strongly towards the cluster distribution.

Results and discussion

Mass Spectra of $Nb_n C_m^+$: In this study we produced two different mass distributions to observe the

Figure 1: Mass distribution of $Nb_nC_m^+$ clusters (a) Nb_4C_4 as the highest intensity condition (b) Nb_nC_3 product rich condition.

reactivity with N₂O gas. Figure 1 shows the two types of mass distribution produced in two different conditions. In one distribution (Figure 1a; He 5 atm) ions Nb₂C₃⁺, Nb₃C₃⁺, Nb₄C₄⁺, Nb₅C₃⁺, Nb₆C₁⁺, Nb₆C₆⁺ show high abundance and in another type of distribution (Figure 1b, He 9 atm) Nb_nC₃⁺ (*n*=2-8) show high abundance.

Reactivity with N₂O: The reactivity of Nb_n C_m^+ clusters were examined for both mass distributions. We observed that the same cluster for both the mass distributions behaved differently to N_2O gas at the same pressure. Figure 2 shows the color maps of intensity ratios of two types of mass distribution. Generally Nb_nC_m clusters decreased with N₂O gas addition. However, some clusters, such as Nb₂C₃ and Nb_3C_2 are inert compared to the adjacent compositions. Additionally, in the Nb_nC_3 product rich condition Nb₂C₃, Nb₃C₄, Nb₅C₇ and Nb₆C₇, Nb₈C₇ were found relatively inert. Furthermore, Nb_nC₃ clusters have reacted more compared to the other clusters. This trend is very different to the result of Nb_4C_4 as the highest intensity condition. This observation implies that geometrically different isomers are formed due to the different cluster formation environment. In Nb_nC_3 product rich condition, Nb clusters react to the neutral C_3 cluster in a growth region while in another condition Nb and C are well mixed during the cluster formation. In order to verify the production of different isomers photoionization experiment can be utilized to obtain their ionization potentials (IP) [2]. Previous IP measurement in our group was conducted under the Nb_nC_3 rich condition, and the values of IPs were close to the calculated ones for 2x2x2 cubic structure in the case of Nb₅C₃. We are further investigating the IP measurement of Nb_4C_4 as the highest intensity condition which will be presented in the conference.

Figure 2: Color maps for two different production conditions of $Nb_nC_m^+$ clusters (a) Nb_4C_4 as the highest intensity condition (b) Nb_nC_3 product rich condition. Values are calculated from the ratio of cluster intensity: ratio = $I_{\text{with N2O}}/I_{\text{without N2O}}$.

References:

[1] Ken Miyajima, Naoya Fukushima, Fumitaka Mafuné, J. Phys. Chem. A 2009, 112, 5774.

[2] Naoya Fukushima, Ken Miyajima, Fumitaka Mafuné, J. Phys. Chem. A 2009, 113, 2309.