NO₃ v₂ バンドのFTIR分光

(岡山大院・自然(理)¹, 広島市大²)清水 奈津子¹, 藤森 隆彰¹, 唐 健¹, 石渡 孝², 川口 建太郎¹

FTIR spectroscopy of the NO₃ v_2 band

(Okayama Univ.¹ Hiroshima City Univ.²) Natuko Simizu, Ryuji Fujimori, Tang Jeng, Takashi Ishiwata, Kentraou Kawaguchi

【序】NO₃ラジカルのv₂(面外変角)振動の高分解能スペクトルは Friedel & Sander¹⁾によ り初めて測定されたが、解析は K=3 の F₁スピン成分に対してのみ報告された。基底 状態の回転定数は我々が得た値と一致しているが、v2状態では大きな減少が認められ、 エネルギーの高い状態からの摂動の効果と考えられるが、摂動解析は報告されていな い。本研究では¹⁵NO₃のスペクトルを742 cm⁻¹領域で初めて測定し、2 v₄状態からの 摂動の効果を考慮した解析を行い、unperturbed の分子定数を得たので報告する。

【実験】NO₃ ラジカルは, Heバッファ (750 mTorr)に5 %He希釈のF₂ (140 mTorr)のマ イクロ波放電により生成したF原子と,HNO3(70mTorr)の反応により得た。そして、生 成したNO3 ラジカルを多重反射型吸収セル(実効光路長48 m)に導入し、フーリエ変換 型赤外分光器BRUKER IFS120HR を用いて赤外吸収スペクトルを測定した。測定中は He-Ne レーザーを用いてNO₃ ラジカルの生成をモニターし(光路長3 m)、常時9~10 % 程度の吸収があるようにHNO3の流量を調整した。

【観測スペクトルと解析】¹⁴NO₃の場合は、多くのスペクトル線が重なって観測されて

いて、帰属が容易ではなかった。一方、¹⁵NO3では回転量子数Nの各Kの回転構造線は よく分離していて、帰属は比較的容 易で、低いNの場合、通常の振動回 転スペクトルの表現でフィットでき た。しかしながら、N=22まで含める と、K=3でのStaggeringおよびK=0での 負の遠心力歪み定数などが認められ た(図1)。Staggeringを最初∆k=6の 遠心力項で説明を試みたが、得られ たh₃パラメーターはBF₃等に比べて 大きすぎ、しかも¹⁴NO₃と符号が逆に なった。従って、2 v4とのコリオリ相 互作用と*l*-type共鳴項がその原因と 考えた。図2はその機構を示す。こ

こで2v4, *l*=0状態がv2に近く、Nが奇数では相互作 図1.¹⁵NO₃ v_2 のスペクトル 用により押し下げられるが、偶数のNでは相手の状態が存在 しないので、シフト量は小さく なる。このシフト量は、コリオ リ項、I型共鳴項およびI=2と I=0間のエネルギー差についての制約を与える。実際の解析で は、以下のコリオリ項を, $v_2=1$ と, $v_4=2$ 間にまたI型共鳴項を $v_4=2$ の中に考慮した。コリオリ 項は通常は $\Delta v_2=1, \Delta v_4=1$ だが $v_4=2$ と $v_4=1$ の k_{444} 項による混合 を考慮した。

図 2. 15 NO₃でのv₂ と 2v₄ との相互作用 H_{cor} : Coriolis 相互作用. H_1 : *l*-type resonance 項

 $\langle v_2 = 0, v_4 = 2, l_4 \mp 2, N, k \pm 1 | H_{Cor} | v_2 = 1, v_4 = 0, l_4, N, k \rangle = \pm [z_{24} + z_{24K}k(k\pm 1)]$ [$N(N+1)-k(k\pm 1)$]^{1/2} エネルギー行列は $\Delta G(G=k-1)=9$ まで含めた。¹⁵NO₃ではK=0-21まで504本のスペクトル線の帰属ができた。解析では基底状態の分子定数は、 v_4 バンドと combination differences より決定されたもの²⁾に固定して、主な定数として v_2 状態の回転定数、遠心力ひずみ定数、 $z_{24}, z_{24k}, 2v_4$ 状態の回転定数および1次のコリオリ結合定数、バンドオリジン、 g_{11} の値などが決定できた。同様に¹⁴NO₃でも摂動解析を行うことができた。ただしスペクトル線の強度は¹⁵NO₃より弱く、帰属できたスペクトル線はK=0-18の範囲で389本だった。¹⁵NO₃の振動数は $v_2=742.7106(3), 2v_4(l=0)=742.605(16), 2v_4(l=2)=761.223(32) cm⁻¹と決定された。¹⁴NO₃のK=3でもstaggeringが観測されたが偶数のN準位が低い周波数にシフトしていた。これは、振動のアイソトープシフトの違いにより<math>2v_2, l=0$ が v_2 より低いエネルギーに来ることにより理解できる。¹⁴NO₃の振動数は $v_2=762.3391(5), 2v_4(l=0)=751.803(17), 2v_4(l=2)=771.704(23) cm⁻¹と決定された。$

【考察】この度の解析で得た v_2 状態の回転定数より慣性欠損は0.131 amu Å²と得られた。 一方、 v_2 状態の慣性欠損を Jogod Oka の式により ζ_4 =-0.188, v_2 =762, v_3 =1127, v_4 =365 cm⁻¹ を用いて計算したところ、0.144 amu Å²が得られ、観測値とよい一致を示した。この計 算値は v_3 振動数依存性が大きく、 v_3 として 1492 cm⁻¹ (以前の帰属)または 1060 cm⁻¹ (Stanton の予想値)を用いるとそれぞれ 0.246 amu Å², 0.097 amu Å²となった。前者は 違いが大きすぎるが後者は許容範囲ではある。この度の解析により $2v_4$ 状態の分子定数

が決まったので 2v₂(*l*=±2)バンドの振動回転スペクトルも予想でき、観測スペクトルと 比較を行っている。その領域に多くのスペクトル線が観測されているが、強度が弱いた め確定的な帰属には至っていない。

¹⁾R. R. Friedl, and S. P. Sander, *J. Phys. Chem.* **91** (1987) 2721-2726

2)藤森,清水,唐,川口,石渡,第12回分子分光研究会(2012,東京)